Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ann Allergy Asthma Immunol ; 126(6): 690-695.e1, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33515711

RESUMEN

BACKGROUND: Rhinovirus (RV) is the main cause of asthma exacerbations in children. Some studies reported that persons with asthma have attenuated interferon (IFN) responses to experimental RV infection compared with healthy individuals. However, responses to community-acquired RV infections in controls and children with asthma have not been compared. OBJECTIVE: To evaluate nasal cytokine responses after natural RV infections in people with asthma and healthy children. METHODS: We compared nasal cytokine expression among controls and children with asthma during healthy, virus-negative surveillance weeks and self-reported RV-positive sick weeks. A total of 14 controls and 21 patients with asthma were studied. Asthma disease severity was based on symptoms and medication use. Viral genome was detected by multiplex polymerase chain reaction. Nasal cytokine protein levels were determined by multiplex assays. RESULTS: Two out of 47 surveillance weeks tested positive for RV, illustrating an asymptomatic infection rate of 5%. A total of 38 of 47 sick weeks (81%) tested positive for the respiratory virus. Of these, 33 (87%) were positive for RV. During well weeks, nasal interleukin 8 (IL-8), IL-12, and IL-1ß levels were higher in children with asthma than controls. Compared with healthy virus-negative surveillance weeks, IL-8, IL-13, and interferon beta increased during colds only in patients with asthma. In both controls and children with asthma, the nasal levels of interferon gamma, interferon lambda-1, IL-1ß, IL-8, and IL-10 increased during RV-positive sick weeks. During RV infection, IL-8, IL-1ß, and tumor necrosis factor-α levels were strongly correlated. CONCLUSION: In both controls and patients with asthma, natural RV infection results in robust type II and III IFN responses.


Asunto(s)
Asma/inmunología , Citocinas/inmunología , Líquido del Lavado Nasal/inmunología , Infecciones por Picornaviridae/inmunología , Rhinovirus , Adolescente , Niño , Femenino , Humanos , Masculino
2.
Allergy ; 75(8): 2005-2019, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32086822

RESUMEN

BACKGROUND: Early-life wheezing-associated respiratory infection with human rhinovirus (RV) is associated with asthma development. RV infection of 6-day-old immature mice causes mucous metaplasia and airway hyperresponsiveness which is associated with the expansion of IL-13-producing type 2 innate lymphoid cells (ILC2s) and dependent on IL-25 and IL-33. We examined regulation of this asthma-like phenotype by IL-1ß. METHODS: Six-day-old wild-type or NRLP3-/- mice were inoculated with sham or RV-A1B. Selected mice were treated with IL-1 receptor antagonist (IL-1RA), anti-IL-1ß, or recombinant IL-1ß. RESULTS: Rhinovirus infection induced Il25, Il33, Il4, Il5, Il13, muc5ac, and gob5 mRNA expression, ILC2 expansion, mucus metaplasia, and airway hyperresponsiveness. RV also induced lung mRNA and protein expression of pro-IL-1ß and NLRP3 as well as cleavage of caspase-1 and pro-IL-1ß, indicating inflammasome priming and activation. Lung macrophages were a major source of IL-1ß. Inhibition of IL-1ß signaling with IL-1RA, anti-IL-1ß, or NLRP3 KO increased RV-induced type 2 cytokine immune responses, ILC2 number, and mucus metaplasia, while decreasing IL-17 mRNA expression. Treatment with IL-1ß had the opposite effect, decreasing IL-25, IL-33, and mucous metaplasia while increasing IL-17 expression. IL-1ß and IL-17 each suppressed Il25, Il33, and muc5ac mRNA expression in cultured airway epithelial cells. Finally, RV-infected 6-day-old mice showed reduced IL-1ß mRNA and protein expression compared to mature mice. CONCLUSION: Macrophage IL-1ß limits type 2 inflammation and mucous metaplasia following RV infection by suppressing epithelial cell innate cytokine expression. Reduced IL-1ß production in immature animals provides a mechanism permitting asthma development after early-life viral infection.


Asunto(s)
Infecciones por Picornaviridae , Rhinovirus , Animales , Citocinas , Inmunidad Innata , Linfocitos , Metaplasia , Ratones , Moco
3.
Mucosal Immunol ; 12(4): 958-968, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31089187

RESUMEN

Activation of the inflammasome is a key function of the innate immune response that regulates inflammation in response to microbial substances. Inflammasome activation by human rhinovirus (RV), a major cause of asthma exacerbations, has not been well studied. We examined whether RV induces inflammasome activation in vivo, molecular mechanisms underlying RV-stimulated inflammasome priming and activation, and the contribution of inflammasome activation to RV-induced airway inflammation and exacerbation. RV infection triggered lung mRNA and protein expression of pro-IL-1ß and NLRP3, indicative of inflammasome priming, as well as cleavage of caspase-1 and pro-IL-1ß, completing inflammasome activation. Immunofluorescence staining showed IL-1ß in lung macrophages. Depletion with clodronate liposomes and adoptive transfer experiments showed macrophages to be required and sufficient for RV-induced inflammasome activation. TLR2 was required for RV-induced inflammasome priming in vivo. UV irradiation blocked inflammasome activation and RV genome was sufficient for inflammasome activation in primed cells. Naive and house dust mite-treated NLRP3-/- and IL-1ß-/- mice, as well as IL-1 receptor antagonist-treated mice, showed attenuated airway inflammation and responsiveness following RV infection. We conclude that RV-induced inflammasome activation is required for maximal airway inflammation and hyperresponsiveness in naive and allergic mice. The inflammasome represents a molecular target for RV-induced asthma exacerbations.


Asunto(s)
Alérgenos/inmunología , Inflamasomas/metabolismo , Infecciones por Picornaviridae/inmunología , Infecciones por Picornaviridae/metabolismo , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/metabolismo , Rhinovirus/inmunología , Animales , Modelos Animales de Enfermedad , Humanos , Inmunización , Interleucina-1beta/genética , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Infecciones por Picornaviridae/virología , Pyroglyphidae/inmunología , Infecciones del Sistema Respiratorio/virología , Rhinovirus/genética , Receptor Toll-Like 2/metabolismo
4.
Viruses ; 10(12)2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30513770

RESUMEN

Respiratory viral infections are strongly associated with asthma exacerbations. Rhinovirus is most frequently-detected pathogen; followed by respiratory syncytial virus; metapneumovirus; parainfluenza virus; enterovirus and coronavirus. In addition; viral infection; in combination with genetics; allergen exposure; microbiome and other pathogens; may play a role in asthma development. In particular; asthma development has been linked to wheezing-associated respiratory viral infections in early life. To understand underlying mechanisms of viral-induced airways disease; investigators have studied respiratory viral infections in small animals. This report reviews animal models of human respiratory viral infection employing mice; rats; guinea pigs; hamsters and ferrets. Investigators have modeled asthma exacerbations by infecting mice with allergic airways disease. Asthma development has been modeled by administration of virus to immature animals. Small animal models of respiratory viral infection will identify cell and molecular targets for the treatment of asthma.


Asunto(s)
Asma/virología , Modelos Animales de Enfermedad , Infecciones del Sistema Respiratorio/virología , Virosis/complicaciones , Animales , Asma/complicaciones , Cricetinae , Hurones , Cobayas , Humanos , Metapneumovirus , Ratones , Microbiota , Ratas , Virus Sincitial Respiratorio Humano , Rhinovirus/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...