Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 29(20): 5788-5801, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37306048

RESUMEN

Human activity and associated landscape modifications alter the movements of animals with consequences for populations and ecosystems worldwide. Species performing long-distance movements are thought to be particularly sensitive to human impact. Despite the increasing anthropogenic pressure, it remains challenging to understand and predict animals' responses to human activity. Here we address this knowledge gap using 1206 Global Positioning System movement trajectories of 815 individuals from 14 red deer (Cervus elaphus) and 14 elk (Cervus canadensis) populations spanning wide environmental gradients, namely the latitudinal range from the Alps to Scandinavia in Europe, and the Greater Yellowstone Ecosystem in North America. We measured individual-level movements relative to the environmental context, or movement expression, using the standardized metric Intensity of Use, reflecting both the directionality and extent of movements. We expected movement expression to be affected by resource (Normalized Difference Vegetation Index, NDVI) predictability and topography, but those factors to be superseded by human impact. Red deer and elk movement expression varied along a continuum, from highly segmented trajectories over relatively small areas (high intensity of use), to directed transitions through restricted corridors (low intensity of use). Human activity (Human Footprint Index, HFI) was the strongest driver of movement expression, with a steep increase in Intensity of Use as HFI increased, but only until a threshold was reached. After exceeding this level of impact, the Intensity of Use remained unchanged. These results indicate the overall sensitivity of Cervus movement expression to human activity and suggest a limitation of plastic responses under high human pressure, despite the species also occurring in human-dominated landscapes. Our work represents the first comparison of metric-based movement expression across widely distributed populations of a deer genus, contributing to the understanding and prediction of animals' responses to human activity.


Asunto(s)
Ciervos , Ecosistema , Humanos , Animales , Ciervos/fisiología , Actividades Humanas , América del Norte , Sistemas de Información Geográfica
2.
Curr Biol ; 30(17): 3444-3449.e4, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32619482

RESUMEN

Animals exhibit a diversity of movement tactics [1]. Tracking resources that change across space and time is predicted to be a fundamental driver of animal movement [2]. For example, some migratory ungulates (i.e., hooved mammals) closely track the progression of highly nutritious plant green-up, a phenomenon called "green-wave surfing" [3-5]. Yet general principles describing how the dynamic nature of resources determine movement tactics are lacking [6]. We tested an emerging theory that predicts surfing and the existence of migratory behavior will be favored in environments where green-up is fleeting and moves sequentially across large landscapes (i.e., wave-like green-up) [7]. Landscapes exhibiting wave-like patterns of green-up facilitated surfing and explained the existence of migratory behavior across 61 populations of four ungulate species on two continents (n = 1,696 individuals). At the species level, foraging benefits were equivalent between tactics, suggesting that each movement tactic is fine-tuned to local patterns of plant phenology. For decades, ecologists have sought to understand how animals move to select habitat, commonly defining habitat as a set of static patches [8, 9]. Our findings indicate that animal movement tactics emerge as a function of the flux of resources across space and time, underscoring the need to redefine habitat to include its dynamic attributes. As global habitats continue to be modified by anthropogenic disturbance and climate change [10], our synthesis provides a generalizable framework to understand how animal movement will be influenced by altered patterns of resource phenology.


Asunto(s)
Migración Animal/fisiología , Cambio Climático , Ciervos/fisiología , Ecosistema , Desarrollo de la Planta , Fenómenos Fisiológicos de las Plantas , Plantas/metabolismo , Animales , Sistemas de Información Geográfica , Herbivoria
3.
Oecologia ; 188(1): 85-95, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29804203

RESUMEN

Faced with rapid environmental changes, individuals may express different magnitude and plasticity in their response to a given stressor. However, little is known about the causes of variation in phenotypic plasticity of the stress response in wild populations. In the present study, we repeatedly captured individual roe deer (Capreolus capreolus) from two wild populations in Sweden exposed to differing levels of predation pressure and measured plasma concentrations of stress-induced cortisol and behavioral docility. While controlling for the marked effects of habituation, we found clear between-population differences in the stress-induced cortisol response. Roe deer living in the area that was recently recolonized by lynx (Lynx lynx) and wolves (Canis lupus) expressed cortisol levels that were around 30% higher than roe deer in the human-dominated landscape free of large carnivores. In addition, for the first time to our knowledge, we investigated the stress-induced cortisol response in free-ranging newborn fawns and found no evidence for hypo-responsiveness during early life in this species. Indeed, stress-induced cortisol levels were of similar magnitude and differed between populations to a similar extent in both neonates and adults. Finally, at an individual level, we found that both cortisol and docility levels were strongly repeatable, and weakly negatively inter-correlated, suggesting that individuals differed consistently in how they respond to a stressor, and supporting the existence of a stress-management syndrome in roe deer.


Asunto(s)
Ciervos , Lynx , Animales , Herbivoria , Personalidad , Suecia
4.
Sci Rep ; 7(1): 9059, 2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28831079

RESUMEN

Apex predators may affect mesopredators through intraguild predation and/or supply of carrion from their prey, causing a trade-off between avoidance and attractiveness. We used wildlife triangle snow-tracking data to investigate the abundance of red fox (Vulpes vulpes) in relation to lynx (Lynx lynx) and wolf (Canis lupus) occurrence as well as land composition and vole (Microtus spp.) density. Data from the Swedish wolf-monitoring system and VHF/GPS-collared wolves were used to study the effect of wolf pack size and time since wolf territory establishment on fox abundance. Bottom-up processes were more influential than top-down effects as the proportion of arable land was the key indicator of fox abundance at the landscape level. At this spatial scale, there was no effect of wolf abundance on fox abundance, whereas lynx abundance had a positive effect. In contrast, at the wolf territory level there was a negative effect of wolves on fox abundance when including detailed information of pack size and time since territory establishment, whereas there was no effect of lynx abundance. This study shows that different apex predator species may affect mesopredator abundance in different ways and that the results may be dependent on the spatiotemporal scale and resolution of the data.


Asunto(s)
Zorros , Lynx , Conducta Predatoria , Lobos , Animales , Ecosistema , Miedo , Cadena Alimentaria , Densidad de Población , Dinámica Poblacional
5.
J Ethol ; 35(2): 161-168, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28496288

RESUMEN

Olfactory signals constitute an important mechanism in interspecific interactions, but little is known regarding their role in communication between predator species. We analyzed the behavioral responses of a mesopredator, the red fox (Vulpes vulpes), to an olfactory cue (scat) of an apex predator, the lynx (Lynx lynx) in Bialowieza Primeval Forest, Poland, using video camera traps. Red fox visited sites with scats more often than expected and the duration of their visits was longer at scat sites than at control sites (no scat added). Vigilant behavior, sniffing and scent marking (including over-marking) occurred more often at scat sites compared to control sites, where foxes mainly passed by. Vigilance was most pronounced during the first days of the recordings. Red fox behavior was also influenced by foxes previously visiting scat sites. They sniffed and scent marked (multiple over-marking) more frequently when the lynx scat had been over-marked previously by red fox. Fox visits to lynx scats may be seen as a trade-off between obtaining information on a potential food source (prey killed by lynx) and the potential risk of predation by an apex predator.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...