Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39374043

RESUMEN

This Perspective covers discovery and mechanistic aspects as well as initial applications of novel ionization processes for use in mass spectrometry that guided us in a series of subsequent discoveries, instrument developments, and commercialization. Vacuum matrix-assisted ionization on an intermediate pressure matrix-assisted laser desorption/ionization source without the use of a laser, high voltages, or any other added energy was simply unbelievable, at first. Individually and as a whole, the various discoveries and inventions started to paint, inter alia, an exciting new picture and outlook in mass spectrometry from which key developments grew that were at the time unimaginable, and continue to surprise us in its simplistic preeminence. We, and others, have demonstrated exceptional analytical utility. Our current research is focused on how best to understand, improve, and use these novel ionization processes through dedicated platforms and source developments. These ionization processes convert volatile and nonvolatile compounds from solid or liquid matrixes into gas-phase ions for analysis by mass spectrometry using, e.g., mass-selected fragmentation and ion mobility spectrometry to provide accurate, and sometimes improved, mass and drift time resolution. The combination of research and discoveries demonstrated multiple advantages of the new ionization processes and established the basis of the successes that lead to the Biemann Medal and this Perspective. How the new ionization processes relate to traditional ionization is also presented, as well as how these technologies can be utilized in tandem through instrument modification and implementation to increase coverage of complex materials through complementary strengths.

2.
Chemistry ; : e202403202, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39349361

RESUMEN

Glyoxylic acid and glycine are widely considered to have been important prebiotic building blocks. Several mechanistic routes have been previously examined for conversion of glyoxylic acid to glycine. Here we provide evidence for a new mechanistic path. Glycine is spontaneously formed from glyoxylic acid in ammonium-rich aqueous solutions at neutral pH; oxamic acid is generated as well. Hydride transfer from the glyoxylate-derived hemiaminal to the corresponding iminium ion appears to underlie this transformation. This proposed mechanism parallels the well-known Cannizzaro reaction mechanism, which leads us to suggest the designation "aza-Cannizzaro reaction." This discovery offers a new perspective on prebiotic nitrogen incorporation because glycine can be a source of nitrogen for more complex molecules, including other α-amino acids.

3.
Rapid Commun Mass Spectrom ; 35 Suppl 1: e8793, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32220130

RESUMEN

RATIONALE: Examining surface protein conformations, and especially achieving this with spatial resolution, is an important goal. The recently discovered ionization processes offer spatial-resolution measurements similar to matrix-assisted laser desorption/ionization (MALDI) and produce charge states similar to electrospray ionization (ESI) extending higher-mass protein applications directly from surfaces on high-performance mass spectrometers. Studying a well-interrogated protein by ion mobility spectrometry-mass spectrometry (IMS-MS) to access effects on structures using a solid vs. solvent matrix may provide insights. METHODS: Ubiquitin was studied by IMS-MS using new ionization processes with commercial and homebuilt ion sources and instruments (Waters SYNAPT G2(S)) and homebuilt 2 m drift-tube instrument; MS™ sources). Mass-to-charge and drift-time (td )-measurements are compared for ubiquitin ions obtained by inlet and vacuum ionization using laserspray ionization (LSI), matrix- (MAI) and solvent-assisted ionization (SAI), respectively, and compared with those from ESI under conditions that are most comparable. RESULTS: Using the same solution conditions with SYNAPT G2(S) instruments, td -distributions of various ubiquitin charge states from MAI, LSI, and SAI are similar to those from ESI using a variety of solvents, matrices, extraction voltages, a laser, and temperature only, showing subtle differences in more compact features within the elongated distribution of structures. However, on a homebuilt drift-tube instrument, within the elongated distribution of structures, both similar and different td -distributions are observed for ubiquitin ions obtained by MAI and ESI. MAI-generated ions are frequently narrower in their td -distributions. CONCLUSIONS: Direct comparisons between ESI and the new ionization methods operational directly from surfaces suggest that the protein in its solution structure prior to exposure to the ionization event is either captured (frozen out) at the time of crystallization, or that the protein in the solid matrix is associated with sufficient solvent to maintain the solution structure, or, alternatively, that the observed structures are those related to what occurs in the gas phase with ESI- or MAI-generated ions and not with the solution structures.


Asunto(s)
Espectrometría de Movilidad Iónica/métodos , Espectrometría de Masas/métodos , Ubiquitina/química , Gases/química , Iones/química , Solventes/química
4.
Rapid Commun Mass Spectrom ; 34 Suppl 2: e8768, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32107802

RESUMEN

RATIONALE: New ionization processes have been developed for biological mass spectrometry (MS) in which the matrix lifts the nonvolatile analyte into the gas phase as ions without any additional energy input. We rationalized that additional fundamental knowledge is needed to assess analytical utility for the field of synthetic polymers and additives. METHODS: Different mass spectrometers (Thermo Orbitrap (Q-)Exactive (Focus); Waters SYNAPT G2(S)) were employed. The formation of multiply charged polymer ions upon exposure of the matrix/analyte(/salt) sample to sub-atmospheric pressure directly from the solid state and surfaces facilitates the use of advanced mass spectrometers for detection of polymeric materials including consumer products (e.g., gum). RESULTS: Astonishingly, using nothing more than a small molecule matrix compound (e.g., 2-methyl-2-nitropropane-1,3-diol or 3-nitrobenzonitrile) and a salt (e.g., mono- or divalent cation(s)), such samples upon exposure to sub-atmospheric pressure transfer nonvolatile polymers and nonvolatile salts into the gas phase as multiply charged ions. These successes contradict the conventional understanding of ionization in MS, because can nonvolatile polymers be lifted in the gas phase as ions not only by as little as a volatile matrix but also by the salt required for ionizing the analyte through noncovalent metal cation adduction(s). Prototype vacuum matrix-assisted ionization (vMAI) and automated sources using a contactless approach are demonstrated for direct analyses of synthetic polymers and plasticizers, minimizing the risk of contamination using direct sample introduction into the mass spectrometer vacuum. CONCLUSIONS: Direct ionization methods from surfaces without the need of high voltage, a laser, or even applied heat are demonstrated for characterization of detailed materials using (ultra)high-resolution and accurate mass measurements enabled by the multiply charged ions extending the mass range of high-performance mass spectrometers and use of a split probe sample introduction device. Our vision is that, with further development of fundamentals and dedicated sources, both spatial- and temporal-resolution measurements are within reach if sensitivity is addressed for decreasing sample-size measurements.

5.
Carbohydr Res ; 449: 11-16, 2017 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-28672165

RESUMEN

With the aid of a series of model thioether or thioglycoside containing polyols protected with combinations of benzyl ethers and 2-naphthylmethyl ethers it is demonstrated that the latter are readily cleaved selectively under hydrogenolytic conditions in the presence of the frequently catalyst-poisoning sulfides. These results suggest the possibility of employing 2-naphthylmethyl ethers in place of benzyl ethers in synthetic schemes when hydrogenolytic deprotection is anticipated in the presence of thioether type functionality.


Asunto(s)
Éteres/química , Hidrógeno/química , Naftalenos/química , Sulfuros/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...