Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 597(7878): 726-731, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34526716

RESUMEN

UTX (also known as KDM6A) encodes a histone H3K27 demethylase and is an important tumour suppressor that is frequently mutated in human cancers1. However, as the demethylase activity of UTX is often dispensable for mediating tumour suppression and developmental regulation2-8, the underlying molecular activity of UTX remains unknown. Here we show that phase separation of UTX underlies its chromatin-regulatory activity in tumour suppression. A core intrinsically disordered region (cIDR) of UTX forms phase-separated liquid condensates, and cIDR loss caused by the most frequent cancer mutation of UTX is mainly responsible for abolishing tumour suppression. Deletion, mutagenesis and replacement assays of the intrinsically disordered region demonstrate a critical role of UTX condensation in tumour suppression and embryonic stem cell differentiation. As shown by reconstitution in vitro and engineered systems in cells, UTX recruits the histone methyltransferase MLL4 (also known as KMT2D) to the same condensates and enriches the H3K4 methylation activity of MLL4. Moreover, UTX regulates genome-wide histone modifications and high-order chromatin interactions in a condensation-dependent manner. We also found that UTY, the Y chromosome homologue of UTX with weaker tumour-suppressive activity, forms condensates with reduced molecular dynamics. These studies demonstrate a crucial biological function of liquid condensates with proper material states in enabling the tumour-suppressive activity of a chromatin regulator.


Asunto(s)
Diferenciación Celular , Cromatina , Genes Supresores de Tumor , Histona Demetilasas/genética , Animales , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/citología , Células HEK293 , Humanos , Proteínas Intrínsecamente Desordenadas/genética , Ratones , Proteínas de Neoplasias/metabolismo , Procesamiento Proteico-Postraduccional , Células THP-1
2.
PLoS One ; 14(6): e0218950, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31233548

RESUMEN

BACKGROUND: Prostate cancer (PC) is a multifocal disease. DNA methylation alterations are not restricted to the immediate peritumor environment, but spatially widespread in the adjacent and distant histologically normal prostate tissues. In the current study, we utilized high-throughput methylation arrays to identify epigenetic changes in the urine from men with and without cancer. DESIGN, SETTING, AND PARTICIPANTS: DNA urine samples were enriched for methylated fragments using MBD methyl-binding antibodies and applied to high density CytoScanHD arrays. Significant loci were validated using quantitative pyrosequencing and binary logistic regression modeling applied to urine sample analyses in a training (n = 83) and validation approach (n = 84). Methylation alterations in prostate tissues using pyrosequencing at the PLA2G16 locus were examined in 38 histologically normal specimens from men with (TA, n = 26) and without (NTA, n = 12) cancer and correlated to gene expression. RESULTS: Methylation microarrays identified 3,986 loci showing significantly altered methylation in the urine samples from patients with PC compared to those without (TA vs NTA; p<0.01). These loci were then compared against subjects with their prostates removed to exclude non-prostate cell markers yielding 196 significant regions. Multiple CpGs adjacent to PLA2G16 CpG island showed increased methylation in TA compared to NTA (p<0.01) in a large validation study of urine samples. The predictive accuracy of PLA2G16 methylation at CG2 showed the highest predictive value at 0.8 (odds ratio, 1.37; 95% confidence interval, 1.16-1.62; p<0.001). Using a probability cutoff of 0.065, the sensitivity and specificity of the multivariate model was 92% and 35%. When histologically normal prostate tissues/biopsies from patients with PC (TA) were compared to subjects without cancer, significant hypermethylation of PLA2G16 was noted (odds ratio, 1.35; 95% confidence interval, 1.07-1.71; p = 0.01). CONCLUSION: PLA2G16 methylation defines an extensive field defect in histologically normal prostate tissue associated with PC. PLA2G16 methylation in urine and prostate tissues can detect the presence of PC.


Asunto(s)
Biomarcadores de Tumor/genética , Biomarcadores de Tumor/orina , Metilación de ADN/genética , Fosfolipasas A2 Calcio-Independiente/genética , Fosfolipasas A2 Calcio-Independiente/orina , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/orina , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/orina , Adulto , Anciano , Anciano de 80 o más Años , Detección Precoz del Cáncer/métodos , Epigénesis Genética/genética , Humanos , Masculino , Tamizaje Masivo/métodos , Persona de Mediana Edad , Próstata/patología , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...