Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nicotine Tob Res ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39018186

RESUMEN

INTRODUCTION: Previous research suggests that e-cigarettes can alter immune function, including in the nasal mucosa, in unique ways. The respiratory microbiome plays a key role in respiratory host defense, but the effects of e-cigarettes on the respiratory or nasal microbiome, are not well understood. METHODS: Using 16S rRNA gene sequencing on nasal samples from adult e-cigarette users, smokers, and nonsmokers, we determined that e-cigarette use and cigarette smoking are associated with differential respiratory microbiome dysbiosis and substantial sex-dependent differences in the nasal microbiome, particularly in e-cigarette users. RESULTS: Staphylococcus aureus, a common respiratory pathogen, was more abundant in both e-cigarette users and smokers in comparison with nonsmokers, while Lactobacillus iners, often consider a protective species, was more abundant in smokers but less abundant in e-cigarette users in comparison with nonsmokers. In addition, we identified significant dysbiosis of the nasal microbiome between e-cigarette users and smokers with high versus low serum cotinine levels, an indicator of tobacco product use and toxicant exposure. We also analyzed nasal lavage fluid for immune mediators associated with host-microbiota interactions. CONCLUSIONS: Our analysis identified disruption of immune mediators in the nose of e-cigarette users and smokers, which is indicative of disrupted respiratory mucosal immune responses. Taken together, our data identified unique, sex-dependent host immune dysfunction associated with e-cigarette use in the nasal mucosa. More broadly, our data highlight the need for continued inclusion and careful consideration of sex as an important variable in the context of toxicant exposures. IMPLICATIONS: This is the first study investigating the effects of e-cigarette use and sex on the nasal microbiome, which is considered an important gatekeeper for protecting the lower respiratory tract from pathogens. We found significant sex, exposure group, and serum cotinine level associated differences in the composition of the nasal microbiome, demonstrating the importance of considering sex in future nasal microbiome studies and warranting further investigation of the mechanisms by which e-cigarette use dysregulates nasal immune homeostasis.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38958881

RESUMEN

KEY POINTS: Inhalational exposure (IE) history assessment is important and may guide chronic rhinosinusitis disease management. Combined exposure status was the most significant factor across differential gene expression analyse IE history was associated with pro-inflammatory transcriptome changes and worse clinical outcomes.

3.
J Toxicol Environ Health A ; 87(14): 561-578, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38721998

RESUMEN

Living conditions are an important modifier of individual health outcomes and may lead to higher allostatic load (AL). However, housing-induced cardiovascular and immune effects contributing to altered environmental responsiveness remain understudied. This investigation was conducted to examine the influence of enriched (EH) versus depleted housing (DH) conditions on cardiopulmonary functions, systemic immune responses, and allostatic load in response to a single wildfire smoke (WS) exposure in mice. Male and female C57BL/6J mice were divided into EH or DH for 22 weeks, and cardiopulmonary assessments measured before and after exposures to either one-hr filtered air (FA) or flaming eucalyptus WS exposure. Male and female DH mice exhibited increased heart rate (HR) and left ventricular mass (LVM), as well as reduced stroke volume and end diastolic volume (EDV) one week following exposure to WS. Female DH mice displayed significantly elevated levels of IL-2, IL-17, corticosterone and hemoglobin A1c (HbA1c) following WS, while female in EH mice higher epinephrine levels were detected. Female mice exhibited higher AL than males with DH, which was potentiated post-WS exposure. Thus, DH increased susceptibility to extreme air pollution in a gender-dependent manner suggesting that living conditions need to be evaluated as a modifier of toxicological responses.


Asunto(s)
Vivienda para Animales , Ratones Endogámicos C57BL , Humo , Incendios Forestales , Animales , Femenino , Masculino , Ratones , Humo/efectos adversos , Alostasis , Contaminantes Atmosféricos , Factores Sexuales , Frecuencia Cardíaca
5.
Heliyon ; 10(8): e29675, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38681659

RESUMEN

Combustion of mixed materials during open air burning of refuse or structural fires in the wildland urban interface produces emissions that worsen air quality, contaminate rivers and streams, and cause poor health outcomes including developmental effects. The zebrafish, a freshwater fish, is a useful model for quickly screening the toxicological and developmental effects of agents in such species and elicits biological responses that are often analogous and predictive of responses in mammals. The purpose of this study was to compare the developmental toxicity of smoke derived from the burning of 5 different burn pit-related material types (plywood, cardboard, plastic, a mixture of the three, and the mixture plus diesel fuel as an accelerant) in zebrafish larvae. Larvae were exposed to organic extracts of increasing concentrations of each smoke 6-to-8-hr post fertilization and assessed for morphological and behavioral toxicity at 5 days post fertilization. To examine chemical and biological determinants of toxicity, responses were related to emissions concentrations of polycyclic hydrocarbons (PAH). Emissions from plastic and the mixture containing plastic caused the most pronounced developmental effects, including mortality, impaired swim bladder inflation, pericardial edema, spinal curvature, tail kinks, and/or craniofacial deformities, although all extracts caused concentration-dependent effects. Plywood, by contrast, altered locomotor responsiveness to light changes to the greatest extent. Some morphological and behavioral responses correlated strongly with smoke extract levels of PAHs including 9-fluorenone. Overall, the findings suggest that material type and emissions chemistry impact the severity of zebrafish developmental toxicity responses to burn pit-related smoke.

6.
bioRxiv ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38645108

RESUMEN

Macrophages are pivotal innate immune cells which exhibit high phenotypic plasticity and can exist in different polarization states dependent on exposure to external stimuli. Numerous methods have been employed to simulate macrophage polarization states to test their function in vitro. However, limited research has explored whether these polarization methods yield comparable populations beyond key gene, cytokine, and cell surface marker expression. Here, we employ an unbiased comprehensive analysis using data organized through the all RNA-seq and ChIP-seq sample and signature search (ARCHS4) database, which compiles all RNAseq data deposited into the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA). In silico analyses were carried out demonstrating that commonly employed macrophage polarization methods generate distinct macrophage subsets that remained undescribed until now. Our analyses confirm existing knowledge on macrophage polarization, while revealing nuanced differences between M2a and M2c subpopulations, suggesting non-interchangeable stimuli for M2a polarization. Furthermore, we identify divergent gene expression patterns in M1 macrophages following standard polarization protocols, indicating significant subset distinctions. Consequently, equivalence cannot be assumed among polarization regimens for in vitro macrophage studies, particularly in simulating diverse pathogen responses.

7.
Chem Res Toxicol ; 37(5): 791-803, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38652897

RESUMEN

Burn pits are a method of open-air waste management that was common during military operations in Iraq, Afghanistan, and other regions in Southwest Asia. Veterans returning from deployment have reported respiratory symptoms, potentially from exposure to burn pit smoke, yet comprehensive assessment of such exposure on pulmonary health is lacking. We have previously shown that exposure to condensates from burn pit smoke emissions causes inflammation and cytotoxicity in mice. In this study, we explored the effects of burn pit smoke condensates on human airway epithelial cells (HAECs) to understand their impact on cellular targets in the human lung. HAECs were cultured at the air-liquid interface (ALI) and exposed to burn pit waste smoke condensates (plywood, cardboard, plastic, mixed, and mixed with diesel) generated under smoldering and flaming conditions. Cytotoxicity was evaluated by measuring transepithelial electrical resistance (TEER) and lactate dehydrogenase (LDH) release; toxicity scores (TSs) were quantified for each exposure. Pro-inflammatory cytokine release and modulation of gene expression were examined for cardboard and plastic condensate exposures. Burn pit smoke condensates generated under flaming conditions affected cell viability, with flaming mixed waste and plywood exhibiting the highest toxicity scores. Cardboard and plastic smoke condensates modulated cytokine secretion, with GM-CSF and IL-1ß altered in more than one exposure group. Gene expression of detoxifying enzymes (ALDH1A3, ALDH3A1, CYP1A1, CYP1B1, NQO1, etc.), mucins (MUC5AC, MUC5B), and cytokines was affected by several smoke condensates. Particularly, expression of IL6 was elevated following exposure to all burn pit smoke condensates, and polycyclic aromatic hydrocarbon acenaphthene was positively associated with the IL-6 level in the basolateral media of HAECs. These observations demonstrate that exposure to smoke condensates of materials present in burn pits adversely affects HAECs and that aberrant cytokine secretion and altered gene expression profiles following burn pit material smoke exposure could contribute to the development of airway disease.


Asunto(s)
Células Epiteliales , Humo , Humanos , Humo/efectos adversos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Cultivadas , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Línea Celular , Quema de Residuos al Aire Libre
8.
J Aerosol Med Pulm Drug Deliv ; 37(4): 167-170, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38687136

RESUMEN

Background: Recent studies show e-cigarette (EC) users have increased rates of chronic bronchitic symptoms that may be associated with depressed mucociliary clearance (MCC). Little is known about the acute or chronic effects of EC inhalation on in vivo MCC. Methods: In vivo MCC was measured in young adult vapers (n = 5 males, mean age = 21) after controlled inhalation of a radiolabeled (Tc99m sulfur colloid) aerosol. Whole-lung clearance of radiolabeled deposited particles was measured over a 90-minute period for baseline MCC and associated with controlled periodic vaping over the first 60 minutes of MCC measurements. The vaping challenge was administered from a fourth generation box mod EC containing unflavored e-liquid (65% propylene glycol/35% vegetable glycerin, 3 mg/mL freebase nicotine). The challenge was administered at the start of each 10-minute interval of MCC measurements and consisted of 1 puff every 30 seconds for 5 minutes (i.e., 10 puffs for each 10-minute period for a total of 60 puffs during the initial 60 minutes of MCC measurements). Results: Compared with baseline, peripheral lung average clearance (%) over the 90 minutes of MCC measures was enhanced, associated with EC challenge, 12 (±6) versus 24 (±6), respectively (p < 0.05 by Wilcoxon signed-rank test). Conclusions: Acute enhancement of in vivo MCC during EC challenge is contrary to recent studies showing nicotine-associated slowing of ciliary beat and mucus transport at higher nicotine levels than those used here. However, our findings are consistent with an acute increase in fluid volume and mucin secretion to the bronchial airway surface that is likely short lived. Research reported in this publication was supported by the National Institutes of Health R01HL139369 and registered with ClinicalTrials.gov (NCT03700892).


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Pulmón , Depuración Mucociliar , Nicotina , Vapeo , Adolescente , Adulto , Femenino , Humanos , Masculino , Adulto Joven , Administración por Inhalación , Aerosoles , Glicerol/administración & dosificación , Pulmón/metabolismo , Pulmón/fisiopatología , Depuración Mucociliar/efectos de los fármacos , Nicotina/administración & dosificación , Nicotina/farmacocinética , Nicotina/efectos adversos , Propilenglicol/administración & dosificación , Azufre Coloidal Tecnecio Tc 99m/administración & dosificación , Factores de Tiempo , Vapeo/efectos adversos
9.
Toxicol Sci ; 199(2): 301-315, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38539046

RESUMEN

Inhalation exposure to plastic incineration emissions (PIEs) is a problem of increasing human relevance, as plastic production and waste creation have drastically increased since mainstream integration during the 20th century. We investigated the effects of PIEs on human nasal epithelial cells (HNECs) to understand if such exposures cause damage and dysfunction to respiratory epithelia. Primary HNECs from male and female donors were cultured at air-liquid interface (ALI), and 16HBE cells were cultured on coverslips. Smoke condensates were generated from incineration of plastic at flaming (640°C) and smoldering (500°C) temperatures, and cells were subsequently exposed to these materials at 5-50 µg/cm2 concentrations. HNECs were assessed for mitochondrial dysfunction and 16HBE cells for glutathione oxidation in real-time analyses. HNEC culture supernatants and total RNA were collected at 4-h postexposure for cytokine and gene expression analysis, and results show that PIEs can acutely induce inflammation, oxidative stress, and mitochondrial dysfunction in HNECs, and that incineration temperature modifies biological responses. Specifically, condensates from flaming and smoldering PIEs significantly increased HNEC secretion of cytokines IL-8, IL-1ß, and IL-13, as well as expression of xenobiotic metabolism pathways and genes such as CYP1A1 and CYP1B1 at 5 and 20 µg/cm2 concentrations. Only 50 µg/cm2 flaming PIEs significantly increased glutathione oxidation in 16HBEs, and decreased respiration and ATP production in HNEC mitochondria. Impact Statement: Our data reveal the impact of incineration temperatures on biological outcomes associated with PIE exposures, emphasizing the importance of temperature as a factor when evaluating respiratory disease associated with PIEs exposure.


Asunto(s)
Contaminantes Atmosféricos , Células Epiteliales , Incineración , Inflamación , Estrés Oxidativo , Humanos , Estrés Oxidativo/efectos de los fármacos , Femenino , Masculino , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Contaminantes Atmosféricos/toxicidad , Inflamación/inducido químicamente , Inflamación/metabolismo , Plásticos/toxicidad , Metabolismo Energético/efectos de los fármacos , Células Cultivadas , Citocinas/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/metabolismo , Glutatión/metabolismo , Humo/efectos adversos , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1B1/metabolismo , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Exposición por Inhalación/efectos adversos
10.
Physiol Rep ; 12(3): e15921, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38302275

RESUMEN

In this study, we compared 12 mm cell culture inserts with permeable polyester membranes (0.4 µm pores) from two different manufacturers: CELLTREAT® and Corning®. Physical dimensions and masses of the inserts were found to be very similar between the two brands, with CELLTREAT® inserts having a slightly smaller diameter and growth area (11.91 mm; 1.11 cm2 ) compared to Corning® Transwells® (12 mm; 1.13 cm2 ). We compared cell differentiation outcomes of human nasal epithelial cells (HNECs) at air-liquid interface grown on inserts from the two different manufacturers, including trans-epithelial electrical resistance, ciliary beat frequency, ciliated area, and gene expression. HNECs from three male donors were used for all endpoints. No statistically significant differences were observed between paired cultures grown on different brands of insert. In conclusion, these inserts are comparable for use with airway epithelial cell model systems and likely do not impact cellular differentiation or cell culture quality.


Asunto(s)
Técnicas de Cultivo de Célula , Células Epiteliales , Humanos , Masculino , Técnicas de Cultivo de Célula/métodos , Células Epiteliales/metabolismo , Sistema Respiratorio , Células Cultivadas , Diferenciación Celular
11.
Toxicol Sci ; 198(2): 157-168, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38243717

RESUMEN

Energy-based surgical instruments produce surgical smoke, which contains harmful byproducts, such as polycyclic aromatic hydrocarbons, volatile organic compounds, particulate matter, and viable microorganisms. The research setting has shifted from the laboratory to the operating room. However, significant heterogeneity in the methods of detection and placement of samplers, diversity in the tissue operated on, and types of surgeries tested has resulted in variability in detected levels and composition of surgical smoke. State regulation limiting surgical smoke exposure through local evacuators is expanding but has yet to reach the national regulatory level. However, most studies have not shown levels above standard established limits but relatively short bursts of high concentrations of these harmful by-products. This review highlights the limitations of the current research and unsupported conclusions while also suggesting further areas of interest that need more focus to improve Occupational Safety and Health Administration guidelines.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Compuestos Orgánicos Volátiles , Humo/efectos adversos , Material Particulado , Quirófanos , Compuestos Orgánicos Volátiles/análisis
12.
BMJ Open ; 14(1): e074655, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238060

RESUMEN

INTRODUCTION: Exposure to particulate matter (PM) pollution has been associated with lower lung function in adults with chronic obstructive pulmonary disease (COPD). Patients with eosinophilic COPD have been found to have higher levels of airway inflammation, greater responsiveness to anti-inflammatory steroid inhalers and a greater lung function response to PM pollution exposure compared with those with lower eosinophil levels. This study will evaluate if reducing home PM exposure by high-efficiency particulate air (HEPA) air filtration improves respiratory health in eosinophilic COPD. METHODS AND ANALYSIS: The Air Purification for Eosinophilic COPD Study (APECS) is a double-blinded randomised placebo-controlled trial that will enrol 160 participants with eosinophilic COPD living in the area of Boston, Massachusetts. Real and sham air purifiers will be placed in the bedroom and living rooms of the participants in the intervention and control group, respectively, for 12 months. The primary trial outcome will be the change in forced expiratory volume in 1 s (FEV1). Lung function will be assessed twice preintervention and three times during the intervention phase (at 7 days, 6 months and 12 months postrandomisation). Secondary trial outcomes include changes in (1) health status by St. George's Respiratory Questionnaire; (2) respiratory symptoms by Breathlessness, Cough and Sputum Scale (BCSS); and (3) 6-Minute Walk Test (6MWT). Inflammatory mediators were measured in the nasal epithelial lining fluid (NELF). Indoor PM will be measured in the home for the week preceding each study visit. The data will be analysed to contrast changes in outcomes in the intervention and control groups using a repeated measures framework. ETHICS AND DISSEMINATION: Ethical approval was obtained from the Institutional Review Board of Beth Israel Deaconess Medical Centre (protocol #2019P0001129). The results of the APECS trial will be presented at scientific conferences and published in peer-reviewed journals. TRIAL REGISTRATION: NCT04252235. Version: October 2023.


Asunto(s)
Asma , Enfermedad Pulmonar Obstructiva Crónica , Adulto , Humanos , Asma/complicaciones , Proyectos de Investigación , Disnea/complicaciones , Polvo , Material Particulado , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...