Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Adv Biol (Weinh) ; 7(10): e2200202, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37140138

RESUMEN

Mitochondria respond to metabolic demands of the cell and to incremental damage, in part, through dynamic structural changes that include fission (fragmentation), fusion (merging of distinct mitochondria), autophagic degradation (mitophagy), and biogenic interactions with the endoplasmic reticulum (ER). High resolution study of mitochondrial structural and functional relationships requires rapid preservation of specimens to reduce technical artifacts coupled with quantitative assessment of mitochondrial architecture. A practical approach for assessing mitochondrial fine structure using two dimensional and three dimensional high-resolution electron microscopy is presented, and a systematic approach to measure mitochondrial architecture, including volume, length, hyperbranching, cristae morphology, and the number and extent of interaction with the ER is described. These methods are used to assess mitochondrial architecture in cells and tissue with high energy demand, including skeletal muscle cells, mouse brain tissue, and Drosophila muscles. The accuracy of assessment is validated in cells and tissue with deletion of genes involved in mitochondrial dynamics.


Asunto(s)
Mitocondrias , Membranas Mitocondriales , Ratones , Animales , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Microscopía Electrónica de Rastreo , Células Cultivadas
3.
Commun Biol ; 4(1): 61, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420340

RESUMEN

Alzheimer's Disease (AD) is a devastating neurodegenerative disorder without a cure. Here we show that mitochondrial respiratory chain complex I is an important small molecule druggable target in AD. Partial inhibition of complex I triggers the AMP-activated protein kinase-dependent signaling network leading to neuroprotection in symptomatic APP/PS1 female mice, a translational model of AD. Treatment of symptomatic APP/PS1 mice with complex I inhibitor improved energy homeostasis, synaptic activity, long-term potentiation, dendritic spine maturation, cognitive function and proteostasis, and reduced oxidative stress and inflammation in brain and periphery, ultimately blocking the ongoing neurodegeneration. Therapeutic efficacy in vivo was monitored using translational biomarkers FDG-PET, 31P NMR, and metabolomics. Cross-validation of the mouse and the human transcriptomic data from the NIH Accelerating Medicines Partnership-AD database demonstrated that pathways improved by the treatment in APP/PS1 mice, including the immune system response and neurotransmission, represent mechanisms essential for therapeutic efficacy in AD patients.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Cognición/efectos de los fármacos , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Pironas/uso terapéutico , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/ultraestructura , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Femenino , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuroprotección , Prueba de Estudio Conceptual , Pironas/farmacología , Transducción de Señal/efectos de los fármacos
4.
J Neurointerv Surg ; 13(10): 906-911, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33361274

RESUMEN

BACKGROUND: Characterization of acute ischemic stroke (AIS) clots has typically focused on two-dimensional histological analysis of the thrombus. The three-dimensional (3D) architecture and distribution of components within emboli have not been fully investigated. The aim of this study was to examine the composition and microstructure of AIS clots using histology and serial block-face scanning electron microscopy (SBFSEM). METHODS: As part of the multi-institutional STRIP registry, 10 consecutive AIS emboli were collected from 10 patients treated by mechanical thrombectomy. Histological and immunohistochemical analysis was performed to determine clot composition. SBFSEM was used to assess the ultrastructural organization of the clots and specific features of individual components. RESULTS: Quantification of Martius Scarlett Blue stain identified fibrin (44.4%) and red blood cells (RBCs, 32.6%) as the main components. Immunohistochemistry showed a mean platelet and von Willebrand factor content of 23.9% and 11.8%, respectively. The 3D organization of emboli varied greatly depending on the region analyzed. RBC-rich areas were composed mainly of tightly packed RBCs deformed into polyhedrocytes with scant fibrin fibers interwoven between cells. The regions with mixed composition showed thick fibrin fibers along with platelets, white blood cells and RBC clusters. Fibrin-rich areas contained dense fibrin masses with sparse RBC. In three cases, the fibrin formed a grid-like or a sponge-like pattern, likely due to thrombolytic treatment. Segmentation showed that fibrin fibers were thinner and less densely packed in these cases. CONCLUSIONS: 3D-SEM provides novel and potentially clinically relevant information on clot components and ultrastructure which may help to inform thrombolytic treatment and medical device design.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Trombosis , Isquemia Encefálica/diagnóstico por imagen , Eritrocitos , Humanos , Microscopía Electrónica de Rastreo , Accidente Cerebrovascular/diagnóstico por imagen , Trombectomía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA