Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 703: 149611, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38354463

RESUMEN

Uterine fibroid is the most common non-cancerous tumor with no satisfactory options for long-term pharmacological treatment. Fibroblast activation protein-α (FAP) is one of the critical enzymes that enhances the fibrosis in uterine fibroids. Through STITCH database mining, we found that dipeptidyl peptidase-4 inhibitors (DPP4i) have the potential to inhibit the activity of FAP. Both DPP4 and FAP belong to the dipeptidyl peptidase family and share a similar catalytic domain. Hence, ligands which have a binding affinity with DPP4 could also bind with FAP. Among the DPP4i, linagliptin exhibited the highest binding affinity (Dock score = -8.562 kcal/mol) with FAP. Our study uncovered that the differences in the S2 extensive-subsite residues between DPP4 and FAP could serve as a basis for designing selective inhibitors specifically targeting FAP. Furthermore, in a dynamic environment, linagliptin was able to destabilize the dimerization interface of FAP, resulting in potential inhibition of its biological activity. True to the in-silico results, linagliptin reduced the fibrotic process in estrogen and progesterone-induced fibrosis in rat uterus. Furthermore, linagliptin reduced the gene expression of transforming growth factor-ß (TGF-ß), a critical factor in collagen secretion and fibrotic process. Masson trichrome staining confirmed that the anti-fibrotic effects of linagliptin were due to its ability to reduce collagen deposition in rat uterus. Altogether, our research proposes that linagliptin has the potential to be repurposed for the treatment of uterine fibroids.


Asunto(s)
Inhibidores de la Dipeptidil-Peptidasa IV , Leiomioma , Ratas , Animales , Femenino , Linagliptina/farmacología , Linagliptina/uso terapéutico , Factor de Crecimiento Transformador beta , Dipeptidil Peptidasa 4/metabolismo , Reposicionamiento de Medicamentos , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Fibrosis , Leiomioma/tratamiento farmacológico , Colágeno , Factores de Crecimiento Transformadores
2.
J Biomol Struct Dyn ; : 1-15, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723871

RESUMEN

Alzheimer's disease (AD) is the leading cause of dementia in older adults. Drug repositioning is a process of finding new therapeutic applications for existing drugs. One of the methods in drug repositioning is to use the side-effect profile of a drug to identify a new therapeutic indication. The drugs with similar side-effects may act on similar biological targets and could affect the same biochemical process. In this study, we explored the Food and Drug Administration-approved drugs using PROMISCUOUS database to find those that have adverse effects profile comparable with the ligands being studied or used to treat AD. Here, we found that the ropinirole, a dopamine receptor agonist, shared a maximum number of side-effects with the drugs proven beneficial for treating AD. Furthermore, molecular modelling demonstrated that ropinirole exhibited strong binding affinity (-9.313 kcal/mol) and best ligand efficiency (0.49) with sigma-1 receptor. Here, we observed that the quaternary amino group of ropinirole is essential for binding with sigma-1 receptor. Molecular dynamic simulation indicated that the movement of the carboxy-terminal helices (α4/α5) could play a major role in the receptor's physiological functions. The neurotoxicity induced by Aß25-35 in SH-SY5Y cells was reduced by ropinirole at concentrations 10, 30, and 50 µM. The effect on spatial learning and memory was examined in mice with Aß25-35 induced memory deficit using the radial arm maze. Ropinirole (10 and 20 mg/kg) significantly improved the short and long-term memories in the radial arm maze test. Our results suggest that ropinirole has the potential to be repositioned for AD treatment.Communicated by Ramaswamy H. Sarma.

3.
Drug Res (Stuttg) ; 73(5): 296-303, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36878466

RESUMEN

Breast cancer is the most commonly diagnosed cancer and the second leading cause of cancer-related death in women after lung cancer. The present study aims to identify potential drug candidates using the PROMISCUOUS database for breast cancer based on side effect profile and then proceed with in silico and in vitro studies. PROMISCUOUS database was used to construct a group of drugs that share maximum side effects with letrozole. Based on the existing literature, ropinirole, risperidone, pregabalin, and gabapentin were selected for in silico and in vitro studies. The molecular docking was carried out using AUTODOCK 4.2.6. MCF-7 cell line was used to evaluate the anti-cancer activity of the selected drugs. PROMISCUOUS database revealed that as many as 23 existing drugs shared between 62 and 79 side-effects with letrozole. From docking result, we found that, ropinirole showed a good binding affinity (-7.7 kcal/mol) against aromatase compared to letrozole (-7.1 kcal/mol) which was followed by gabapentin (-6.4 kcal/mol), pregabalin (-5.7 kcal/mol) and risperidone (-5.1 kcal/mol). From the in vitro results, ropinirole and risperidone showed good anti-cancer activity of IC50 with 40.85±11.02 µg/ml and 43.10±9.58 µg/ml cell viability. Based on this study results and existing literature we conclude that risperidone, pregabalin, and gabapentin are not ideal candidates for repurposing in breast cancer but ropinirole could be an excellent choice for repurposing in breast cancer after further studies.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Letrozol/uso terapéutico , Simulación del Acoplamiento Molecular , Reposicionamiento de Medicamentos , Gabapentina/farmacología , Gabapentina/uso terapéutico , Pregabalina/uso terapéutico , Risperidona/uso terapéutico
4.
Reprod Sci ; 30(5): 1383-1398, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-35969363

RESUMEN

Uterine fibroid or leiomyoma is the most common benign uterus tumor. The tumor is primarily composed of smooth muscle (fibroid) cells, myofibroblast, and a significant amount of extracellular matrix components. It mainly affects women of reproductive age. They are uncommon before menarche and usually disappear after menopause. The fibroids have excessive extracellular matrix components secreted by activated fibroblast cells (myofibroblast). Myofibroblast has the characteristics of fibroblast and smooth muscle cells. These cells possess contractile capability due to the expression of contractile proteins which are normally found only in muscle tissues. The rigid nature of the tumor is responsible for many side effects associated with uterine fibroids. The current drug treatment strategies are primarily hormone-driven and not anti-fibrotic. This paper emphasizes the fibrotic background of uterine fibroids and the mechanisms behind the deposition of excessive extracellular matrix components. The transforming growth factor-ß, hippo, and focal adhesion kinase-mediated signaling pathways activate the fibroblast cells and deposit excessive extracellular matrix materials. We also exemplify how dipeptidyl peptidase-4 and fibroblast activation protein inhibitors could be beneficial in reducing the fibrotic process in leiomyoma. Dipeptidyl peptidase-4 and fibroblast activation protein inhibitors prevent the fibrotic process in organs such as the kidneys, lungs, liver, and heart. These inhibitors are proven to inhibit the signaling pathways mentioned above at various stages of their activation. Based on literature evidence, we constructed a narrative review on the mechanisms that support the beneficial effects of dipeptidyl peptidase-4 and fibroblast activation protein inhibitors for treating uterine fibroids.


Asunto(s)
Leiomioma , Neoplasias Uterinas , Femenino , Humanos , Leiomioma/metabolismo , Neoplasias Uterinas/patología , Fibroblastos/metabolismo , Fibrosis , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/farmacología , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/uso terapéutico
5.
Neurochem Int ; 145: 105014, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33689805

RESUMEN

Microglial cells are the resident immune cells of the central nervous system. They are essential for normal functioning, maintenance of tissue integrity, clearance of dying neurons, elimination of pathogens, development and maintenance of homeostasis of the CNS. Many studies have consistently reported that oxidative stress and associated neuroinflammation mediated by microglial cells have a degenerating effect on dopaminergic neurons. In Parkinson's disease, the microglial cells by a process called microgliosis undergo rapid proliferation, accumulate at the site of tissue injury and undergo phenotypic and functional changes that result in the release of massive amounts of free radicals causing inflammation and neurodegeneration of dopaminergic neurons. Following the discovery of the irrefutable role oxidative stress and associated neuroinflammation, several proven antioxidants were tested for possible protective and therapeutic potential in Parkinson's disease but the results so far have not been encouraging and equivocal. Consequently, it is rational to look for endogenous targets that enhance the oxidative defense mechanism against free radicals and protect dopaminergic neurons from neuroinflammation and neurodegeneration. One such target is a nuclear factor-erythroid -2-related factor 2 (Nrf2). Nrf2 is a redox-sensitive transcription factor located in the cytoplasm of the cells that helps cells adapt to oxidative stress and inflammation by upregulating the expression of almost 200 cytoprotective genes. Fractalkine exists in a transmembrane form and a soluble form and is a cytokine that links microglial cells and Nrf2. The fractalkine receptors, expressed exclusively by microglial cells, on activation by fractalkine protects dopaminergic neurons from degeneration caused by free radicals and pro-inflammatory mediators through increased expression of Nrf2 dependent genes. The current anti Parkinsonism drugs do not cure the disease and also cause several debilitating motor and non-motor adverse drug effects. So it becomes imperative to explore novel targets and discover novel therapeutic agents to treat Parkinson's disease in a better way and improve the quality of life of patients with Parkinson's disease.


Asunto(s)
Antiparkinsonianos/administración & dosificación , Mediadores de Inflamación/metabolismo , Microglía/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/fisiología , Enfermedad de Parkinson/metabolismo , Animales , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Gliosis/tratamiento farmacológico , Gliosis/metabolismo , Humanos , Mediadores de Inflamación/antagonistas & inhibidores , Microglía/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Enfermedad de Parkinson/tratamiento farmacológico
6.
Chin Herb Med ; 13(2): 243-249, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36117501

RESUMEN

Objective: Clitoria ternatea is a well-known bioactive plant used to treat several inflammatory ailments in Ayurvedic system of medicine in India. The present investigation aimed to determine the anti-inflammatory and anti-arthritic activity of ethanolic extract of Clitoria ternatea roots (EECT) in animal models. Methods: The anti-inflammatory activity of the EECT was evaluated by carrageenan and histamine-induced paw edema. Results: EECT showed a significant reduction in mean paw edema volume in both carrageenan and histamine-induced inflammation. The efficacy of EECT in rheumatoid arthritis was tested against Freund's complete adjuvant (CFA) induced arthritic model in Wistar rats. The anti-arthritic effect of EECT was determined by systematic scoring of arthritis symptoms and measuring paw edema. A considerable decrease in paw diameter was observed in the EECT (200 and 400 mg/kg) and diclofenac (10 mg/kg) treated groups after day 7. Diclofenac (10 mg/kg) and EECT (400 mg/kg) showed a significant reduction in paw diameter from day 14 compared with CFA control (P < 0.001). The anti-arthritic activity was also confirmed from the altered biochemical, haematological (Hb, RBC and WBC) and anti-oxidant parameters (SOD, MDA, CAT, and GSH). EECT (400 and 200 mg/kg) also showed a marked inhibition of joint destruction. Conclusion: This study provides a pharmacological rationale for the traditional use of C. ternatea against inflammation and rheumatoid arthritis in India.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...