Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38732200

RESUMEN

We are living in an era of advanced nanoscience and nanotechnology. Numerous nanomaterials, culminating in nanorobots, have demonstrated ingenious applications in biomedicine, including breast cancer (BC) nano-theranostics. To solve the complicated problem of BC heterogeneity, non-targeted drug distribution, invasive diagnostics or surgery, resistance to classic onco-therapies and real-time monitoring of tumors, nanorobots are designed to perform multiple tasks at a small scale, even at the organelles or molecular level. Over the last few years, most nanorobots have been bioengineered as biomimetic and biocompatible nano(bio)structures, resembling different organisms and cells, such as urchin, spider, octopus, fish, spermatozoon, flagellar bacterium or helicoidal cyanobacterium. In this review, readers will be able to deepen their knowledge of the structure, behavior and role of several types of nanorobots, among other nanomaterials, in BC theranostics. We summarized here the characteristics of many functionalized nanodevices designed to counteract the main neoplastic hallmark features of BC, from sustaining proliferation and evading anti-growth signaling and resisting programmed cell death to inducing angiogenesis, activating invasion and metastasis, preventing genomic instability, avoiding immune destruction and deregulating autophagy. Most of these nanorobots function as targeted and self-propelled smart nano-carriers or nano-drug delivery systems (nano-DDSs), enhancing the efficiency and safety of chemo-, radio- or photodynamic therapy, or the current imagistic techniques used in BC diagnosis. Most of these nanorobots have been tested in vitro, using various BC cell lines, as well as in vivo, mainly based on mice models. We are still waiting for nanorobots that are low-cost, as well as for a wider transition of these favorable effects from laboratory to clinical practice.


Asunto(s)
Neoplasias de la Mama , Nanotecnología , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Neoplasias de la Mama/diagnóstico , Femenino , Nanotecnología/métodos , Animales , Nanoestructuras/química , Nanoestructuras/uso terapéutico , Robótica/métodos , Nanomedicina Teranóstica/métodos , Sistemas de Liberación de Medicamentos/métodos , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología
2.
Life (Basel) ; 14(3)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38541726

RESUMEN

We are exposed to a mixture of environmental man-made and natural xenobiotics. We experience a wide spectrum of environmental exposure in our lifetime, including the effects of xenobiotics on gametogenesis and gametes that undergo fertilization as the starting point of individual development and, moreover, in utero exposure, which can itself cause the first somatic or germline mutation necessary for breast cancer (BC) initiation. Most xenobiotics are metabolized or/and bioaccumulate and biomagnify in our tissues and cells, including breast tissues, so the xenobiotic metabolism plays an important role in BC initiation and progression. Many considerations necessitate a more valuable explanation regarding the molecular mechanisms of action of xenobiotics which act as genotoxic and epigenetic carcinogens. Thus, exposomics and the exposome concept are based on the diversity and range of exposures to physical factors, synthetic chemicals, dietary components, and psychosocial stressors, as well as their associated biologic processes and molecular pathways. Existing evidence for BC risk (BCR) suggests that food-borne chemical carcinogens, air pollution, ionizing radiation, and socioeconomic status are closely related to breast carcinogenesis. The aim of this review was to depict the dynamics and kinetics of several xenobiotics involved in BC development, emphasizing the role of new omics fields related to BC exposomics, such as environmental toxicogenomics, epigenomics and interactomics, metagenomics, nutrigenomics, nutriproteomics, and nutrimiRomics. We are mainly focused on food and nutrition, as well as endocrine-disrupting chemicals (EDCs), involved in BC development. Overall, cell and tissue accumulation and xenobiotic metabolism or biotransformation can lead to modifications in breast tissue composition and breast cell morphology, DNA damage and genomic instability, epimutations, RNA-mediated and extracellular vesicle effects, aberrant blood methylation, stimulation of epithelial-mesenchymal transition (EMT), disruption of cell-cell junctions, reorganization of the actin cytoskeleton, metabolic reprogramming, and overexpression of mesenchymal genes. Moreover, the metabolism of xenobiotics into BC cells impacts almost all known carcinogenic pathways. Conversely, in our food, there are many bioactive compounds with anti-cancer potential, exerting pro-apoptotic roles, inhibiting cell cycle progression and proliferation, migration, invasion, DNA damage, and cell stress conditions. We can conclude that exposomics has a high potential to demonstrate how environmental exposure to xenobiotics acts as a double-edged sword, promoting or suppressing tumorigenesis in BC.

3.
Molecules ; 28(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38005222

RESUMEN

The identification of new cancer-associated genes/proteins, the characterization of their expression variation, the interactomics-based assessment of differentially expressed genes/proteins (DEGs/DEPs), and understanding the tumorigenic pathways and biological processes involved in BC genesis and progression are necessary and possible by the rapid and recent advances in bioinformatics and molecular profiling strategies. Taking into account the opinion of other authors, as well as based on our own team's in vitro studies, we suggest that the human jumping translocation breakpoint (hJTB) protein might be considered as a tumor biomarker for BC and should be studied as a target for BC therapy. In this study, we identify DEPs, carcinogenic pathways, and biological processes associated with JTB silencing, using 2D-PAGE coupled with nano-liquid chromatography tandem mass spectrometry (nLC-MS/MS) proteomics applied to a MCF7 breast cancer cell line, for complementing and completing our previous results based on SDS-PAGE, as well as in-solution proteomics of MCF7 cells transfected for JTB downregulation. The functions of significant DEPs are analyzed using GSEA and KEGG analyses. Almost all DEPs exert pro-tumorigenic effects in the JTBlow condition, sustaining the tumor suppressive function of JTB. Thus, the identified DEPs are involved in several signaling and metabolic pathways that play pro-tumorigenic roles: EMT, ERK/MAPK, PI3K/AKT, Wnt/ß-catenin, mTOR, C-MYC, NF-κB, IFN-γ and IFN-α responses, UPR, and glycolysis/gluconeogenesis. These pathways sustain cancer cell growth, adhesion, survival, proliferation, invasion, metastasis, resistance to apoptosis, tight junctions and cytoskeleton reorganization, the maintenance of stemness, metabolic reprogramming, survival in a hostile environment, and sustain a poor clinical outcome. In conclusion, JTB silencing might increase the neoplastic phenotype and behavior of the MCF7 BC cell line. The data is available via ProteomeXchange with the identifier PXD046265.


Asunto(s)
Neoplasias de la Mama , Espectrometría de Masas en Tándem , Humanos , Femenino , Células MCF-7 , Neoplasias de la Mama/genética , Fosfatidilinositol 3-Quinasas , Apoptosis/genética
4.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37834160

RESUMEN

The identification of new genes/proteins involved in breast cancer (BC) occurrence is widely used to discover novel biomarkers and understand the molecular mechanisms of BC initiation and progression. The jumping translocation breakpoint (JTB) gene may act both as a tumor suppressor or oncogene in various types of tumors, including BC. Thus, the JTB protein could have the potential to be used as a biomarker in BC, but its neoplastic mechanisms still remain unknown or controversial. We previously analyzed the interacting partners of JTBhigh protein extracted from transfected MCF7 BC cell line using SDS-PAGE complemented with in-solution digestion, respectively. The previous results suggested the JTB contributed to the development of a more aggressive phenotype and behavior for the MCF7 BC cell line through synergistic upregulation of epithelial-mesenchymal transition (EMT), mitotic spindle, and fatty acid metabolism-related pathways. In this work, we aim to complement the previously reported JTB proteomics-based experiments by investigating differentially expressed proteins (DEPs) and tumorigenic pathways associated with JTB overexpression using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). Statistically different gel spots were picked for protein digestion, followed by nanoliquid chromatography-tandem mass spectrometry (nLC-MS/MS) analysis. We identified six DEPs related to the JTBhigh condition vs. control that emphasize a pro-tumorigenic (PT) role. Twenty-one proteins, which are known to be usually overexpressed in cancer cells, emphasize an anti-tumorigenic (AT) role when low expression occurs. According to our previous results, proteins that have a PT role are mainly involved in the activation of the EMT process. Interestingly, JTB overexpression has been correlated here with a plethora of significant upregulated and downregulated proteins that sustain JTB tumor suppressive functions. Our present and previous results sustain the necessity of the complementary use of different proteomics-based methods (SDS-PAGE, 2D-PAGE, and in-solution digestion) followed by tandem mass spectrometry to avoid their limitations, with each method leading to the delineation of specific clusters of DEPs that may be merged for a better understanding of molecular pathways and neoplastic mechanisms related to the JTB's role in BC initiation and progression.


Asunto(s)
Neoplasias de la Mama , Espectrometría de Masas en Tándem , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Células MCF-7 , Carcinogénesis , Electroforesis en Gel de Poliacrilamida , Cromatografía , Electroforesis en Gel Bidimensional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA