Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Transfus Med Hemother ; 51(3): 175-184, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38867805

RESUMEN

Background: At the beginning of the pandemic, COVID-19 convalescent plasma (CCP) containing anti-SARS-CoV-2 antibodies was suggested as a source of therapy. In the last 3 years, many trials have demonstrated the limited usefulness of CCP therapy. This led us to the hypothesis that CCP could contain other elements, along with the desired neutralizing antibodies, which could potentially prevent it from having a therapeutic effect, among them cytokines, chemokines, growth factors, clotting factors, and autoantibodies. Methods: In total, 39 cytokines were analyzed in the plasma of 190 blood donors, and further research focused on the levels of 23 different cytokines in CCP (sCD40L, eotaxin, FGF-2, FLT-3L, ractalkine, GRO-α, IFNα2, IL-1ß, IL-1RA, IL-5, IL-6, IL-8, IL-12, IL-13, IL-15, IL-17E, IP-10, MCP-1, MIP-1b, PDGF-AA, TGFα, TNFα, and TRAIL). Anti-SARS-CoV-2 antibodies and neutralizing antibodies were detected in CCP. Results: We found no significant differences between CCP taken within a maximum of 180 days from the onset of the first COVID-19 symptoms and the controls. We also made a comparison of the cytokine levels between the low neutralizing antibodies (<160) group and the high neutralizing antibodies (≥160) group and found there were no differences between the groups. Our research also showed no correlation either to levels of anti-SARS-CoV-2 IgG Ab or to the levels of neutralizing antibodies. There were also no significant changes in cytokine levels based on the period after the start of COVID-19 symptoms. Conclusions: No elements which could potentially be responsible for preventing CCP from having a therapeutic effect were found.

2.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38673743

RESUMEN

Semen cryopreservation has played an important role in medically assisted reproduction for decades. In addition to preserving male fertility, it is sometimes used for overcoming logistical issues. Despite its proven clinical usability and safety, there is a lack of knowledge of how it affects spermatozoa at the molecular level, especially in terms of non-coding RNAs. Therefore, we conducted this study, where we compared slow freezing and vitrification of good- and poor-quality human semen samples by analyzing conventional sperm quality parameters, performing functional tests and analyzing the expression of miRNAs. The results revealed that cryopreservation of normozoospermic samples does not alter the maturity of spermatozoa (protamine staining, hyaluronan binding), although cryopreservation can increase sperm DNA fragmentation and lower motility. On a molecular level, we revealed that in both types of cryopreservation, miRNAs from spermatozoa are significantly overexpressed compared to those in the native semen of normozoospermic patients, but in oligozoospermic samples, this effect is observed only after vitrification. Moreover, we show that expression of selected miRNAs is mostly overexpressed in native oligozoospermic samples compared to normozoospermic samples. Conversely, when vitrified normozoospermic and oligozoospermic samples were compared, we determined that only miR-99b-5p was significantly overexpressed in oligozoospermic sperm samples, and when comparing slow freezing, only miR-15b-5p and miR-34b-3p were significantly under-expressed in oligozoospermic sperm samples. Therefore, our results imply that cryopreservation of normozoospermic sperm samples can modulate miRNA expression profiles in spermatozoa to become comparable to those in oligozoospermic samples.


Asunto(s)
Criopreservación , MicroARNs , Análisis de Semen , Preservación de Semen , Semen , Espermatozoides , Vitrificación , Humanos , MicroARNs/genética , Masculino , Criopreservación/métodos , Análisis de Semen/métodos , Preservación de Semen/métodos , Semen/metabolismo , Espermatozoides/metabolismo , Motilidad Espermática/genética , Congelación , Adulto , Fragmentación del ADN
3.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38543135

RESUMEN

Mesenchymal stem cells (MSCs) are of great interest in cell therapies due to the immunomodulatory and other effects they have after autologous or allogeneic transplantation. In most clinical applications, a high number of MSCs is required; therefore, the isolated MSC population must be expanded in the cell culture until the desired number is reached. Analysing freshly isolated MSCs is challenging due to their rareness and heterogeneity, which is noticeable among donors, tissues, and cell subpopulations. Although the phenotype of MSCs in tissue can differ from those of cultured cells, phenotyping and counting are usually performed only after MSC proliferation. As MSC applicability is a developing and growing field, there is a need to implement phenotyping and counting methods for freshly isolated MSCs, especially in new one-step procedures where isolated cells are implanted immediately without cell culturing. Only by analysing harvested cells can we correctly evaluate such studies. This review describes multilevel heterogeneity and concentrations of MSCs and different strategies for phenotype determination and enumeration of freshly isolated MSCs.

4.
Virol J ; 20(1): 53, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36973781

RESUMEN

BACKGROUND: Hyperimmune convalescent COVID-19 plasma (CCP) containing anti-SARS-CoV-2 neutralizing antibodies (NAbs) was proposed as a therapeutic option for patients early in the new coronavirus disease pandemic. The efficacy of this therapy depends on the quantity of neutralizing antibodies (NAbs) in the CCP units, with titers ≥ 1:160 being recommended. The standard neutralizing tests (NTs) used for determining appropriate CCP donors are technically demanding and expensive and take several days. We explored whether they could be replaced by high-throughput serology tests and a set of available clinical data. METHODS: Our study included 1302 CCP donors after PCR-confirmed COVID-19 infection. To predict donors with high NAb titers, we built four (4) multiple logistic regression models evaluating the relationships of demographic data, COVID-19 symptoms, results of various serological testing, the period between disease and donation, and COVID-19 vaccination status. RESULTS: The analysis of the four models showed that the chemiluminescent microparticle assay (CMIA) for the quantitative determination of IgG Abs to the RBD of the S1 subunit of the SARS-CoV-2 spike protein was enough to predict the CCP units with a high NAb titer. CCP donors with respective results > 850 BAU/ml SARS-CoV-2 IgG had a high probability of attaining sufficient NAb titers. Including additional variables such as donor demographics, clinical symptoms, or time of donation into a particular predictive model did not significantly increase its sensitivity and specificity. CONCLUSION: A simple quantitative serological determination of anti-SARS-CoV-2 antibodies alone is satisfactory for recruiting CCP donors with high titer NAbs.


Asunto(s)
COVID-19 , Humanos , Vacunas contra la COVID-19 , Sueroterapia para COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Inmunoglobulina G , Inmunización Pasiva/métodos
5.
PLoS One ; 17(12): e0279244, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36534689

RESUMEN

The removal of leukocytes from blood components helps to prevent or reduce some adverse reactions that occur after blood transfusions. The implementation of the leukodepletion process in the preparation of blood units requires quality control, consisting of a reliable cell counting method to determine residual leukocytes in blood components. The most widely used methodology is a flow cytometric bead-based counting method. To avoid the need for commercial counting beads, we evaluated a volumetric counting method of leukocyte enumeration. A total of 160 specimens of leukodepleted plasma, red cell and platelet units, as well as 58 samples of commercially available controls containing different concentration levels of leukocytes, were included in the study. The conventional quality control method using the bead-based counting method performed with the FACSCalibur flow cytometer was compared to the bead-based counting method and the volumetric counting method performed with the MACSQuant 10 flow cytometer. Our results show that the MACSQuant bead-based method, as well as the volumetric MACSQuant method, meet the sensitivity requirements of residual leukocyte enumeration when compared to the gold standard, bead-based FACSCalibur method. We conclude that the volumetric method can be a substitute for the bead-based counting of residual leukocytes in a variety of blood components.


Asunto(s)
Transfusión de Componentes Sanguíneos , Leucocitos , Recuento de Leucocitos , Citometría de Flujo/métodos , Plaquetas
6.
Biomolecules ; 12(4)2022 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-35454183

RESUMEN

The stem cell theory of aging postulates that stem cells become inefficient at maintaining the original functions of the tissues. We, therefore, hypothesized that transplanting young bone marrow (BM) to old recipients would lead to rejuvenating effects on immunity, followed by improved general health, decreased frailty, and possibly life span extension. We developed a murine model of non-myeloablative heterochronic BM transplantation in which old female BALB/c mice at 14, 16, and 18(19) months of age received altogether 125.1 ± 15.6 million nucleated BM cells from young male donors aged 7-13 weeks. At 21 months, donor chimerism was determined, and the immune system's innate and adaptive arms were analyzed. Mice were then observed for general health and frailty until spontaneous death, when their lifespan, post-mortem examinations, and histopathological changes were recorded. The results showed that the old mice developed on average 18.7 ± 9.6% donor chimerism in the BM and showed certain improvements in their innate and adaptive arms of the immune system, such as favorable counts of neutrophils in the spleen and BM, central memory Th cells, effector/effector memory Th and Tc cells in the spleen, and B1a and B1b cells in the peritoneal cavity. Borderline enhanced lymphocyte proliferation capacity was also seen. The frailty parameters, pathomorphological results, and life spans did not differ significantly in the transplanted vs. control group of mice. In conclusion, although several favorable effects are obtained in our heterochronic non-myeloablative transplantation model, additional optimization is needed for better rejuvenation effects.


Asunto(s)
Trasplante de Médula Ósea , Fragilidad , Animales , Trasplante de Médula Ósea/métodos , Femenino , Longevidad , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Bazo
7.
Transfusion ; 62(3): 556-562, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35041206

RESUMEN

BACKGROUND: The association of the ABO blood group with COVID-19 disease has been confirmed by several studies, with the blood group A patients being more susceptible and prone to a more severe clinical course of the disease. Additionally, several authors also addressed the association of ABO-types and the levels of anti-SARS-CoV-2 antibodies in convalescents, mostly supporting a theory that the non-O blood group convalescents present with higher levels of anti-SARS-CoV-2 antibodies. STUDY DESIGN AND METHODS: Since previous findings were based on small convalescent cohorts, we quantified the anti-SARS-CoV-2 antibody levels in a total of 3187 convalescent plasma donors with three commercial serological and one standard neutralizing antibody test. The majority of donors had undergone a mild form of the disease and the median time of sampling was 66 days after diagnosis. RESULTS: None of the antibody quantitation results showed any significant association with the ABO blood group types. The same result was evident in the subgroup of vaccinated individuals (n = 370) and the subgroups when stratified according to post-COVID-19 periods (0-60, 60-120, and 120-180 days). CONCLUSION: In conclusion, we found no evidence to confirm that the ABO blood group types influence the level of SARS-CoV-2 antibody response in COVID-19 convalescent plasma donors.


Asunto(s)
Sistema del Grupo Sanguíneo ABO , COVID-19 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Donantes de Sangre , COVID-19/terapia , Humanos , Inmunización Pasiva , SARS-CoV-2 , Sueroterapia para COVID-19
8.
Lab Anim ; 55(1): 43-52, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32419577

RESUMEN

Experimental murine models are an essential tool in the field of bone marrow (BM) transplantation research. Therefore, numerous mice are required to obtain a sufficient number of BM cells, which is in contrast with the Reduction principle of the 3R principles. The selection of the cell source and the isolation protocol are therefore critical in obtaining a sufficient yield of cells for experiments. Nowadays, the vertebrae are already used as an extra source of BM cells to enrich the number of isolated cells from the long bones and ilia (LBI), when needed. Yet, little is known if BM cells from LBI and vertebrae share the same characteristics and can be pooled together for further analysis. Therefore, in this study, we aimed to compare the quantity and characteristics of haematopoietic and stromal cell lines in the BM from the LBI and vertebrae. To count haematopoietic and mesenchymal stem/stromal progenitors, colony-forming unit assays were performed. To determine the expansion capacity of mesenchymal stem/stromal cells (MSCs), cultivation of MSCs and measurement of the expression of surface markers by flow cytometry was performed. The characterisation and enumeration of immune cell populations was also performed by flow cytometry. Here, we show that the vertebrae are a comparable source of BM cells to the LBI regarding the analysed parameters.


Asunto(s)
Alternativas a las Pruebas en Animales/normas , Células de la Médula Ósea/fisiología , Células Madre Mesenquimatosas/fisiología , Columna Vertebral/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C
9.
Mech Ageing Dev ; 191: 111327, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32814083

RESUMEN

Experiments using heterochronic parabionts, i.e. young and old animals connected surgically and hence developing a shared circulation, have shown that blood-borne factors, transferred from young to old mice and vice versa, play a role in influencing a range of health outcomes associated with advanced age. Previous work has explored the contributory role of plasma-derived factors in mediating such parabiotic effects, including those on aging-associated neural and behavioural impairments. Here, we wanted to identify possible influences that blood-borne cellular factors may have on age-related behavioural phenotypes. Towards this end, we subjected old BALB/c H-2d mice to repetitive non-myeloablative bone marrow transplants (BMT) from young donor animals and assessed effects on behaviour and cognition. We detected expected age-related alterations in our behavioural assays but did not discern any obvious differences between old BMT mice and old control animals. Our study represents the first to look at possible behavioural and cognitive effects of heterochronic, non-myeloablative BMT. Future work should extend this study by including additional behavioural tests in the analysis, addressing whether beneficial effects of BMT may be detectable on other genetic backgrounds and reconciling our findings with those achieved by myeloablative BMT.


Asunto(s)
Envejecimiento , Conducta Animal , Trasplante de Médula Ósea , Aloinjertos , Animales , Ratones , Ratones Endogámicos BALB C
10.
Eur J Haematol ; 100(4): 372-382, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29315822

RESUMEN

OBJECTIVE: Hematopoietic stem and progenitor cells (HSPCs) can be used as a vector for gene therapies. In order to predict the number of HSPCs cells necessary to achieve the target level of chimerism in an autologous setting, syngeneic male bone marrow (BM) cells were transplanted into 35 non-conditioned female BALB/c mice. METHOD: The resulting chimerism was determined at 6-53 weeks using qPCR, cell subpopulation sorting, and colony-forming units (CFU) analysis. RESULTS: After the transplantation of 125.8 ± 2.5 million nucleated BM cells, the BM of recipients contained 20.0 ± 2.8% donor cells, representing a chimerism of 0.16 ± 0.02% per one million transplanted nucleated BM cells. Chimerism levels in the BM, neutrophils, and B cells were comparable, whereas in T cells it was lower, and in CFU was approximately twice greater than in BM. CONCLUSION: By extrapolating our murine data, and data from some previous studies to a human non-conditioned autologous CD34+ HSPC transplantation setting, we conclude that approximately 44 million CD34+ HSPCs would be needed to achieve 20% donor chimerism in a 70-kg human, which could serve as a starting point for the future use of HSCPs in gene and cell therapy.


Asunto(s)
Trasplante de Médula Ósea , Quimerismo , Terapia Genética , Quimera por Trasplante , Animales , Biomarcadores , Diferenciación Celular , Linaje de la Célula , Separación Celular , Femenino , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Inmunofenotipificación , Masculino , Ratones , Modelos Animales , Donantes de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA