Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Biomolecules ; 14(5)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38785995

RESUMEN

Olesoxime, a cholesterol derivative with an oxime group, possesses the ability to cross the blood-brain barrier, and has demonstrated excellent safety and tolerability properties in clinical research. These characteristics indicate it may serve as a centrally active ligand of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), whose disruption of activity with organophosphate compounds (OP) leads to uncontrolled excitation and potentially life-threatening symptoms. To evaluate olesoxime as a binding ligand and reactivator of human AChE and BChE, we conducted in vitro kinetic studies with the active metabolite of insecticide parathion, paraoxon, and the warfare nerve agents sarin, cyclosarin, tabun, and VX. Our results showed that both enzymes possessed a binding affinity for olesoxime in the mid-micromolar range, higher than the antidotes in use (i.e., 2-PAM, HI-6, etc.). While olesoxime showed a weak ability to reactivate AChE, cyclosarin-inhibited BChE was reactivated with an overall reactivation rate constant comparable to that of standard oxime HI-6. Moreover, in combination with the oxime 2-PAM, the reactivation maximum increased by 10-30% for cyclosarin- and sarin-inhibited BChE. Molecular modeling revealed productive interactions between olesoxime and BChE, highlighting olesoxime as a potentially BChE-targeted therapy. Moreover, it might be added to OP poisoning treatment to increase the efficacy of BChE reactivation, and its cholesterol scaffold could provide a basis for the development of novel oxime antidotes.


Asunto(s)
Acetilcolinesterasa , Butirilcolinesterasa , Humanos , Butirilcolinesterasa/metabolismo , Butirilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Acetilcolinesterasa/química , Ligandos , Oximas/química , Oximas/farmacología , Reactivadores de la Colinesterasa/farmacología , Reactivadores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Colestenonas/farmacología , Colestenonas/química , Cinética , Sarín/química , Proteínas Ligadas a GPI/metabolismo , Proteínas Ligadas a GPI/química , Proteínas Ligadas a GPI/antagonistas & inhibidores , Antídotos/farmacología , Antídotos/química , Colesterol/metabolismo , Colesterol/química , Compuestos Organofosforados
2.
Bioengineering (Basel) ; 10(7)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37508776

RESUMEN

Sterilization is a prerequisite for biomedical devices before contacting the human body. It guarantees the lack of infection by eliminating microorganisms (i.e., bacteria, spores and fungi). It constitutes the last fabrication process of a biomedical device. The aim of this paper is to understand the effect of different sterilization methods (ethanol-EtOH, autoclave-AC, autoclave + ultraviolet radiation-ACUV and gamma irradiation-G) on the surface chemistry and electrochemical reactivity (with special attention on the kinetics of the oxygen reduction reaction) of CoCrMo and titanium biomedical alloys used as prosthetic materials. To do that, electrochemical measurements (open circuit potential, polarization resistance, cathodic potentiodynamic polarization and electrochemical impedance spectroscopy) and surface analyses (Auger Electron Spectroscopy) of the sterilized surfaces were carried out. The obtained results show that the effect of sterilization on the corrosion behavior of biomedical alloys is material-dependent: for CoCrMo alloys, autoclave treatment increases the thickness and the chromium content of the passive film increasing its corrosion resistance compared to simple sterilization in EtOH, while in titanium and its alloys, autoclave and UV-light accelerates its corrosion rate by accelerating the kinetics of oxygen reduction.

3.
Toxicology ; 494: 153588, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37419273

RESUMEN

The uncharged 3-hydroxy-2-pyridine aldoximes with protonatable tertiary amines are studied as antidotes in toxic organophosphates (OP) poisoning. Due to some of their specific structural features, we hypothesize that these compounds could exert diverse biological activity beyond their main scope of application. To examine this further, we performed an extensive cell-based assessment to determine their effects on human cells (SH-SY5Y, HEK293, HepG2, HK-2, myoblasts and myotubes) and possible mechanism of action. As our results indicated, aldoxime having a piperidine moiety did not induce significant toxicity up to 300 µM within 24 h, while those with a tetrahydroisoquinoline moiety, in the same concentration range, showed time-dependent effects and stimulated mitochondria-mediated activation of the intrinsic apoptosis pathway through ERK1/2 and p38-MAPK signaling and subsequent activation of initiator caspase 9 and executive caspase 3 accompanied with DNA damage as observed already after 4 h exposure. Mitochondria and fatty acid metabolism were also likely targets of 3-hydroxy-2-pyridine aldoximes with tetrahydroisoquinoline moiety, due to increased phosphorylation of acetyl-CoA carboxylase. In silico analysis predicted kinases as their most probable target class, while pharmacophores modeling additionally predicted the inhibition of a cytochrome P450cam. Overall, if the absence of significant toxicity for piperidine bearing aldoxime highlights the potential of its further studies in medical counter-measures, the observed biological activity of aldoximes with tetrahydroisoquinoline moiety could be indicative for future design of compounds either in a negative context in OP antidotes design, or in a positive one for design of compounds for the treatment of other phenomena like cell proliferating malignancies.


Asunto(s)
Neuroblastoma , Tetrahidroisoquinolinas , Humanos , Antídotos/química , Células HEK293 , Oximas/toxicidad , Oximas/química , Organofosfatos/química , Piridinas , Apoptosis , Transducción de Señal , Piperidinas , Tetrahidroisoquinolinas/toxicidad
4.
Chemistry ; 29(48): e202301160, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37357141

RESUMEN

Thioaurone chromophores, part of the indigoid family and commonly named hemithioindigos, have recently gained attention due to their interesting photoswitching properties. The study focuses on heterocyclic hemithioindigos (Het-HTIs) and investigates their synthesis using electron-rich and electron-poor heterocycles and modifications to the thioindigo moiety. Furthermore, it aims to evaluate the photoswitching performances of these synthesised compounds, with a particular emphasis on the influence of the heterocycles on the photoisomerization capabilities, which was found to be more prominent than the modifications made to the thioindigo moiety. Among the 44 Het-HTIs tested, several exhibited highly efficient photoswitchable properties, demonstrating Z-to-E photoisomerization in the blue region, and E-to-Z photoisomerization in the green or the red regions. Additionally, the metastable E-isomer displayed an impressive half-life of up to 54 days in a polar solvent (DMSO). These results suggest that heterocyclic hemithioindigos hold great promise as photoswitches for researchers interested in light-controlled molecular mechanisms.

5.
J Med Chem ; 65(6): 4649-4666, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35255209

RESUMEN

Recent events demonstrated that organophosphorus nerve agents are a serious threat for civilian and military populations. The current therapy includes a pyridinium aldoxime reactivator to restore the enzymatic activity of acetylcholinesterase located in the central nervous system and neuro-muscular junctions. One major drawback of these charged acetylcholinesterase reactivators is their poor ability to cross the blood-brain barrier. In this study, we propose to evaluate glucoconjugated oximes devoid of permanent charge as potential central nervous system reactivators. We determined their in vitro reactivation efficacy on inhibited human acetylcholinesterase, the crystal structure of two compounds in complex with the enzyme, their protective index on intoxicated mice, and their pharmacokinetics. We then evaluated their endothelial permeability coefficients with a human in vitro model. This study shed light on the structural restrains of new sugar oximes designed to reach the central nervous system through the glucose transporter located at the blood-brain barrier.


Asunto(s)
Intoxicación por Organofosfatos , Acetilcolinesterasa , Animales , Antídotos/farmacología , Antídotos/uso terapéutico , Inhibidores de la Colinesterasa/farmacología , Ratones , Intoxicación por Organofosfatos/tratamiento farmacológico , Compuestos Organofosforados/farmacología , Oximas/química , Oximas/farmacología , Oximas/uso terapéutico , Azúcares
6.
J Med Chem ; 64(1): 812-839, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33356266

RESUMEN

The combination of the scaffolds of the cholinesterase inhibitor huprine Y and the antioxidant capsaicin results in compounds with nanomolar potencies toward human acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) that retain or improve the antioxidant properties of capsaicin. Crystal structures of their complexes with AChE and BChE revealed the molecular basis for their high potency. Brain penetration was confirmed by biodistribution studies in C57BL6 mice, with one compound (5i) displaying better brain/plasma ratio than donepezil. Chronic treatment of 10 month-old APP/PS1 mice with 5i (2 mg/kg, i.p., 3 times per week, 4 weeks) rescued learning and memory impairments, as measured by three different behavioral tests, delayed the Alzheimer-like pathology progression, as suggested by a significantly reduced Aß42/Aß40 ratio in the hippocampus, improved basal synaptic efficacy, and significantly reduced hippocampal oxidative stress and neuroinflammation. Compound 5i emerges as an interesting anti-Alzheimer lead with beneficial effects on cognitive symptoms and on some underlying disease mechanisms.


Asunto(s)
Acetilcolinesterasa/metabolismo , Antioxidantes/metabolismo , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Acetilcolinesterasa/química , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/metabolismo , Sitios de Unión , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Butirilcolinesterasa/química , Inhibidores de la Colinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Estrés Oxidativo/efectos de los fármacos , Relación Estructura-Actividad , Distribución Tisular
7.
Biochem Pharmacol ; 177: 114010, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32360492

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder associated with cholinergic dysfunction, provoking memory loss and cognitive dysfunction in elderly patients. The cholinergic hypothesis provided over the years with molecular targets for developing palliative treatments for AD, acting on the cholinergic system, namely, acetylcholinesterase and α7 nicotinic acetylcholine receptor (α7 nAChR). In our synthetic work, we used "click-chemistry" to synthesize two Multi Target Directed Ligands (MTDLs) MB105 and MB118 carrying tacrine and quinuclidine scaffolds which are known for their anticholinesterase and α7 nAChR agonist activities, respectively. Both, MB105 and MB118, inhibit human acetylcholinesterase and human butyrylcholinesterase in the nanomolar range. Electrophysiological recordings on Xenopus laevis oocytes expressing human α7 nAChR showed that MB105 and MB118 acted as partial agonists of the referred nicotinic receptor, albeit, with different potencies despite their similar structure. The different substitution at C-3 on the 2,3-disubstituted quinuclidine scaffold may account for the significantly lower potency of MB118 compared to MB105. Electrophysiological recordings also showed that the tacrine precursor MB320 behaved as a competitive antagonist of human α7 nAChR, in the micromolar range, while the quinuclidine synthetic precursor MB099 acted as a partial agonist. Taken all together, MB105 behaved as a partial agonist of α7 nAChR at concentrations where it completely inhibited human acetylcholinesterase activity paving the way for the design of novel MTDLs for palliative treatment of AD.


Asunto(s)
Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Receptor Nicotínico de Acetilcolina alfa 7/antagonistas & inhibidores , Acetilcolinesterasa , Alquinos/química , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Barrera Hematoencefálica/efectos de los fármacos , Butirilcolinesterasa/metabolismo , Catálisis , Inhibidores de la Colinesterasa/síntesis química , Química Clic , Cobre , Reacción de Cicloadición , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Femenino , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Tacrina/química , Tacrina/farmacología , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Receptor Nicotínico de Acetilcolina alfa 7/genética , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
8.
ACS Chem Neurosci ; 11(7): 1072-1084, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32105443

RESUMEN

Nerve agents, the deadliest chemical warfare agents, are potent inhibitors of acetylcholinesterase (AChE) and cause rapid cholinergic crisis with serious symptoms of poisoning. Oxime reactivators of AChE are used in medical practice in the treatment of nerve agent poisoning, but the search for novel improved reactivators with central activity is an ongoing pursuit. For numerous oximes synthesized, in vitro reactivation is a standard approach in biological evaluation with little attention given to the pharmacokinetic properties of the compounds. This study reports a comprehensive physicochemical, pharmacokinetic, and safety profiling of five lipophilic 3-hydroxy-2-pyridine aldoximes, which were recently shown to be potent AChE reactivators with a potential to be centrally active. The oxime JR595 was singled out as highly metabolically stable in human liver microsomes, noncytotoxic oxime for SH-SY5Y neuroblastoma and 1321N1 astrocytoma cell lines, and its pharmacokinetic profile was determined after intramuscular administration in mice. JR595 was rapidly absorbed into blood after 15 min with simultaneous distribution to the brain at up to about 40% of its blood concentration; however, it was eliminated from both the brain and blood within an hour. In addition, the MDCKII-MDR1 cell line assay showed that oxime JR595 was not a P-glycoprotein efflux pump substrate. Finally, the preliminary antidotal study against multiple LD50 doses of VX and sarin in mice showed the potential of JR595 to provide desirable therapeutic outcomes with future improvements in its circulation time.


Asunto(s)
Antídotos/farmacología , Encéfalo/efectos de los fármacos , Inhibidores de la Colinesterasa/farmacología , Agentes Nerviosos/farmacología , Acetilcolinesterasa/metabolismo , Animales , Antídotos/química , Encéfalo/metabolismo , Sustancias para la Guerra Química/farmacología , Humanos , Masculino , Ratones , Oximas/química , Oximas/farmacología , Relación Estructura-Actividad
9.
Eur J Med Chem ; 168: 58-77, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30798053

RESUMEN

Both cholinesterases (AChE and BChE) and kinases, such as GSK-3α/ß, are associated with the pathology of Alzheimer's disease. Two scaffolds, targeting AChE (tacrine) and GSK-3α/ß (valmerin) simultaneously, were assembled, using copper(I)-catalysed azide alkyne cycloaddition (CuAAC), to generate a new series of multifunctional ligands. A series of eight multi-target directed ligands (MTDLs) was synthesized and evaluated in vitro and in cell cultures. Molecular docking studies, together with the crystal structures of three MTDL/TcAChE complexes, with three tacrine-valmerin hybrids allowed designing an appropriate linker containing a 1,2,3-triazole moiety whose incorporation preserved, and even increased, the original inhibitory potencies of the two selected pharmacophores toward the two targets. Most of the new derivatives exhibited nanomolar affinity for both targets, and the most potent compound of the series displayed inhibitory potencies of 9.5 nM for human acetylcholinesterase (hAChE) and 7 nM for GSK-3α/ß. These novel dual MTDLs may serve as suitable leads for further development, since, in the micromolar range, they exhibited low cytotoxicity on a panel of representative human cell lines including the human neuroblastoma cell line SH-SY5Y. Moreover, these tacrine-valmerin hybrids displayed a good ability to penetrate the blood-brain barrier (BBB) without interacting with efflux pumps such as P-gp.


Asunto(s)
Acetilcolinesterasa/metabolismo , Antineoplásicos/farmacología , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Triazoles/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cristalografía por Rayos X , Perros , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Ligandos , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , Triazoles/síntesis química , Triazoles/química
10.
J Org Chem ; 83(21): 13515-13522, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30280899

RESUMEN

We report the use of air-stable Cu(I)-NHC complex 4a as a catalyst for the efficient microwave-assisted synthesis of peptidotriazoles on solid phase. Compared with the usual conditions (CuI or CuSO4/NaAsc), catalyst 4a allowed the preparation of a series of peptidomimetic compounds containing a 1,2,3-triazole ring in their backbone without the oxidation of common side-chains. Overall, the peptidotriazoles were obtained in good yields (61-87%), in excellent purity (higher than 94%) and with low copper contamination.

11.
J Control Release ; 290: 102-111, 2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30308259

RESUMEN

A novel approach for brain protection against poisoning by organophosphorus agents is developed based on the combination treatment of dual delivery of two oximes. Pralidoxime chloride (2-PAM) and a novel reactivator, 6-(5-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)pentyl)-3-hydroxy picolinaldehyde oxime (3-HPA), have been loaded in solid-lipid nanoparticles (SLNs) to offer distinct release profile and systemic half-life for both oximes. To increase the therapeutic time window of both oximes, SLNs with two different compartments were designed to load each respective drug. Oxime-loaded SLNs of hydrodynamic diameter between 100 and 160 nm and negative zeta potential (-30 to -25 mV) were stable for a period of 10 months at 4 °C. SLNs displayed longer circulation time in the bloodstream compared to free 3-HPA and free 2-PAM. Oxime-loaded SLNs were suitable for intravenous (iv) administration. Paraoxon-poisoned rats (0.8 × LD50) were treated with 3-HPA-loaded SLNs and 2-PAM+3-HPA-loaded SLNs at the dose of 3-HPA and 2-PAM of 5 mg/kg. Brain AChE reactivation up to 30% was slowly achieved in 5 h after administration of 3-HPA-SLNs. For combination therapy with two oximes, a time-dependent additivity and increased reactivation up to 35% were observed.


Asunto(s)
Encéfalo/efectos de los fármacos , Inhibidores de la Colinesterasa/toxicidad , Nanopartículas/administración & dosificación , Fármacos Neuroprotectores/administración & dosificación , Oximas/administración & dosificación , Paraoxon/toxicidad , Acetilcolinesterasa/metabolismo , Animales , Encéfalo/metabolismo , Sinergismo Farmacológico , Femenino , Lípidos/administración & dosificación , Masculino , Oximas/sangre , Oximas/farmacocinética , Ratas Wistar
12.
J Med Chem ; 61(17): 7630-7639, 2018 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-30125110

RESUMEN

Acetylcholinesterase (AChE), a key enzyme in the central and peripheral nervous systems, is the principal target of organophosphorus nerve agents. Quaternary oximes can regenerate AChE activity by displacing the phosphyl group of the nerve agent from the active site, but they are poorly distributed in the central nervous system. A promising reactivator based on tetrahydroacridine linked to a nonquaternary oxime is also an undesired submicromolar reversible inhibitor of AChE. X-ray structures and molecular docking indicate that structural modification of the tetrahydroacridine might decrease inhibition without affecting reactivation. The chlorinated derivative was synthesized and, in line with the prediction, displayed a 10-fold decrease in inhibition but no significant decrease in reactivation efficiency. X-ray structures with the derivative rationalize this outcome. We thus show that rational design based on structural studies permits the refinement of new-generation pyridine aldoxime reactivators that may be more effective in the treatment of nerve agent intoxication.


Asunto(s)
Reactivadores de la Colinesterasa/química , Reactivadores de la Colinesterasa/farmacología , Agentes Nerviosos/toxicidad , Relación Estructura-Actividad , Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Animales , Dominio Catalítico , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos/métodos , Proteínas de Peces/química , Proteínas de Peces/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Agentes Nerviosos/química , Cloruro de Obidoxima/farmacología , Compuestos Organofosforados/química , Compuestos Organofosforados/toxicidad
13.
Chemistry ; 24(38): 9675-9691, 2018 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-29672968

RESUMEN

A new series of 3-hydroxy-2-pyridine aldoxime compounds have been designed, synthesised and tested in vitro, in silico, and ex vivo as reactivators of human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBChE) inhibited by organophosphates (OPs), for example, VX, sarin, cyclosarin, tabun, and paraoxon. The reactivation rates of three oximes (16-18) were determined to be greater than that of 2-PAM and comparable to that of HI-6, two pyridinium aldoximes currently used by the armies of several countries. The interactions important for a productive orientation of the oxime group within the OP-inhibited enzyme have been clarified by molecular-modelling studies, and by the resolution of the crystal structure of the complex of oxime 17 with Torpedo californica AChE. Blood-brain barrier penetration was predicted for oximes 15-18 based on their physicochemical properties and an in vitro brain membrane permeation assay. Among the evaluated compounds, two morpholine-3-hydroxypyridine aldoxime conjugates proved to be promising reactivators of OP-inhibited cholinesterases. Moreover, efficient ex vivo reactivation of phosphylated native cholinesterases by selected oximes enabled significant hydrolysis of VX, sarin, paraoxon, and cyclosarin in whole human blood, which indicates that the oximes have scavenging potential.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Butirilcolinesterasa/metabolismo , Organofosfatos/química , Oximas/química , Barrera Hematoencefálica/química , Butirilcolinesterasa/química , Humanos , Relación Estructura-Actividad
14.
Molecules ; 23(3)2018 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-29534488

RESUMEN

Symptomatic treatment of myasthenia gravis is based on the use of peripherally-acting acetylcholinesterase (AChE) inhibitors that, in some cases, must be discontinued due to the occurrence of a number of side-effects. Thus, new AChE inhibitors are being developed and investigated for their potential use against this disease. Here, we have explored two alternative approaches to get access to peripherally-acting AChE inhibitors as new agents against myasthenia gravis, by structural modification of the brain permeable anti-Alzheimer AChE inhibitors tacrine, 6-chlorotacrine, and huprine Y. Both quaternization upon methylation of the quinoline nitrogen atom, and tethering of a triazole ring, with, in some cases, the additional incorporation of a polyphenol-like moiety, result in more polar compounds with higher inhibitory activity against human AChE (up to 190-fold) and butyrylcholinesterase (up to 40-fold) than pyridostigmine, the standard drug for symptomatic treatment of myasthenia gravis. The novel compounds are furthermore devoid of brain permeability, thereby emerging as interesting leads against myasthenia gravis.


Asunto(s)
Acetilcolinesterasa/metabolismo , Aminoacridinas/síntesis química , Aminoquinolinas/síntesis química , Inhibidores de la Colinesterasa/síntesis química , Acetilcolinesterasa/química , Aminoacridinas/química , Aminoacridinas/farmacología , Aminoquinolinas/química , Aminoquinolinas/farmacología , Butirilcolinesterasa/química , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Regulación hacia Abajo , Proteínas Ligadas a GPI/química , Proteínas Ligadas a GPI/metabolismo , Compuestos Heterocíclicos de 4 o más Anillos/química , Humanos , Modelos Moleculares , Estructura Molecular , Miastenia Gravis/tratamiento farmacológico , Miastenia Gravis/enzimología , Relación Estructura-Actividad , Tacrina/química
16.
J Med Chem ; 60(21): 9067-9089, 2017 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-28985084

RESUMEN

Hydroxamic acids are outstanding zinc chelating groups that can be used to design potent and selective metalloenzyme inhibitors in various therapeutic areas. Some hydroxamic acids display a high plasma clearance resulting in poor in vivo activity, though they may be very potent compounds in vitro. We designed a 57-member library of hydroxamic acids to explore the structure-plasma stability relationships in these series and to identify which enzyme(s) and which pharmacophores are critical for plasma stability. Arylesterases and carboxylesterases were identified as the main metabolic enzymes for hydroxamic acids. Finally, we suggest structural features to be introduced or removed to improve stability. This work thus provides the first medicinal chemistry toolbox (experimental procedures and structural guidance) to assess and control the plasma stability of hydroxamic acids and realize their full potential as in vivo pharmacological probes and therapeutic agents. This study is particularly relevant to preclinical development as it allows obtaining compounds equally stable in human and rodent models.


Asunto(s)
Ácidos Hidroxámicos/química , Plasma/química , Bibliotecas de Moléculas Pequeñas , Animales , Hidrolasas de Éster Carboxílico , Estabilidad de Medicamentos , Humanos , Tasa de Depuración Metabólica , Ratones , Plasma/enzimología , Ratas , Relación Estructura-Actividad
18.
Chem Biol Interact ; 267: 11-16, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26972668

RESUMEN

Organophosphorus nerve agents, like VX, are highly toxic due to their strong inhibition potency against acetylcholinesterase (AChE). AChE inhibited by VX can be reactivated using powerful nucleophilic molecules, most commonly oximes, which are one major component of the emergency treatment in case of nerve agent intoxication. We present here a comparative in vivo study on Swiss mice of four reactivators: HI-6, pralidoxime and two uncharged derivatives of 3-hydroxy-2-pyridinaldoxime that should more easily cross the blood-brain barrier and display a significant central nervous system activity. The reactivability kinetic profile of the oximes is established following intraperitoneal injection in healthy mice, using an original and fast enzymatic method based on the reactivation potential of oxime-containing plasma samples. HI-6 displays the highest reactivation potential whatever the conditions, followed by pralidoxime and the two non quaternary reactivators at the dose of 50 mg/kg bw. But these three last reactivators display equivalent reactivation potential at the same dose of 100 µmol/kg bw. Maximal reactivation potential closely correlates to surviving test results of VX intoxicated mice.


Asunto(s)
Análisis Químico de la Sangre/métodos , Barrera Hematoencefálica/efectos de los fármacos , Sustancias para la Guerra Química/toxicidad , Reactivadores de la Colinesterasa/sangre , Compuestos Organotiofosforados/toxicidad , Oximas/farmacología , Compuestos de Pralidoxima/farmacología , Compuestos de Piridinio/farmacología , Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Eritrocitos/citología , Eritrocitos/enzimología , Semivida , Humanos , Inyecciones Intraperitoneales , Masculino , Ratones , Oximas/metabolismo , Compuestos de Pralidoxima/metabolismo , Sustancias Protectoras/metabolismo , Sustancias Protectoras/farmacología , Compuestos de Piridinio/metabolismo
19.
Chem Commun (Camb) ; 52(77): 11599-602, 2016 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-27604478

RESUMEN

Two near infra-red (NIR) fluorescent probes HupNIR1 and HupNIR2 based on the huprine scaffold and cyanine 5.0 dye have been synthesised and evaluated in situ for the detection of acetylcholinesterases in different tissues. As anticipated by the initial properties of huprine, both probes displayed a high affinity and selectivity for AChE toward BChE, with IC50 values in the nanomolar range and without any non-specific binding in the tissues. HupNIR2 appears the best probe for AChE with a great selectivity and sensitivity for AChE even in the brain region displaying a low AChE concentration as striatum. Moreover, the binding of HupNIR2 is affected when AChE is inhibited with toxic molecules such as organophosphates. This work provides a new tool to visualize active AChE in biological applications.


Asunto(s)
Acetilcolinesterasa/análisis , Colorantes Fluorescentes/análisis , Colorantes Fluorescentes/química , Acetilcolinesterasa/metabolismo , Animales , Humanos , Rayos Infrarrojos
20.
Curr Med Chem ; 22(28): 3278-304, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26242258

RESUMEN

The two main pathological hallmarks of Alzheimer's disease (AD) in the brain are senile plaques (SPs) composed of beta-amyloid (Aß) peptides and neurofibrillary tangles (NFTs) of hyperphosphorylated tau protein. These hallmarks are associated with a cholinergic deficit. While the process leading to the development of AD is complex and multifactorial, and the etiology of AD is not completely known, it is nowadays clear that AD is a multifaceted illness requiring the combination of synergetic treatment strategies. Because definite diagnosis is achieved by postmortem examination of the brain, new noninvasive diagnostic imaging modalities for AD are in high demand, both to detect and monitor the evolution of this sickness, and evaluate the efficacy of treatments. Positron Emission Tomography (PET) is a nuclear molecular imaging technique that uses radiopharmaceuticals labeled with a positron-emitting isotope (carbon-11, fluorine-18, copper-64, gallium- 68…), to visualize in vivo cellular metabolism with high-spatial resolution and unique sensitivity, while Single-Photon Emission Computed Tomography (SPECT) using radioisotopes such as technetium-99m or iodine-123. Besides being a powerful tool for diagnosis (mostly in oncology with [(18)F]-FDG), PET experiments can provide information about biochemical mechanisms in living tissues or interactions between neurotransmitter and brain receptors. For the past two decades, numerous radiopharmaceuticals have been developed for imaging the lesions observed in AD patients. Tau aggregates and Aß plaques can also be visualized and quantified by mean of specific radioligands. The latter has been the focus of intense research efforts lately, leading to new FDA approved radiopharmaceuticals. This paper aimed at summarizing the recent advances in PET and SPECT imaging of AD pathophysiology.


Asunto(s)
Enfermedad de Alzheimer/patología , Tomografía de Emisión de Positrones , Radiofármacos , Tomografía Computarizada de Emisión de Fotón Único , Enfermedad de Alzheimer/fisiopatología , Animales , Humanos , Radiofármacos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...