Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Brain Behav ; 10(1): e01465, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31769222

RESUMEN

BACKGROUND: Inflammation in the brain is mediated by the cyclooxygenase pathway, which leads to the production of prostaglandins. Prostaglandin (PG) D2, the most abundant PG in the brain, increases under pathological conditions and is spontaneously metabolized to PGJ2. PGJ2 is highly neurotoxic, with the potential to transition neuroinflammation into a chronic state and contribute to neurodegeneration as seen in many neurological diseases. Conversely, PACAP27 is a lipophilic peptide that raises intracellular cAMP and is an anti-inflammatory agent. The aim of our study was to investigate the therapeutic potential of PACAP27 to counter the behavioral and neurotoxic effects of PGJ2 observed in aged subjects. METHODS: PGJ2 was injected bilaterally into the hippocampal CA1 region of 53-week-old and 12-week-old C57BL/6N male mice, once per week over 3 weeks (three total infusions) and included co-infusions of PACAP27 within respective treatment groups. Our behavioral assessments looked at spatial learning and memory performance on the 8-arm radial maze, followed by histological analyses of fixed hippocampal tissue using Fluoro-Jade C and fluorescent immunohistochemistry focused on IBA-1 microglia. RESULTS: Aged mice treated with PGJ2 exhibited spatial learning and long-term memory deficits, as well as neurodegeneration in CA3 pyramidal neurons. Aged mice that received co-infusions of PACAP27 exhibited remediated learning and memory performance and decreased neurodegeneration in CA3 pyramidal neurons. Moreover, microglial activation in the CA3 region was also reduced in aged mice cotreated with PACAP27. CONCLUSIONS: Our data show that PGJ2 can produce a retrograde spread of damage not observed in PGJ2-treated young mice, leading to age-dependent neurodegeneration of hippocampal neurons producing learning and memory deficits. PACAP27 can remediate the behavioral and neurodegenerative effects that PGJ2 produces in aged subjects. Targeting specific neurotoxic prostaglandins, such as PGJ2, offers great promise as a new therapeutic strategy downstream of cyclooxygenases, to combat the neuronal deficits induced by chronic inflammation.


Asunto(s)
Hipocampo/efectos de los fármacos , Trastornos de la Memoria/tratamiento farmacológico , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Prostaglandina D2/análogos & derivados , Aprendizaje Espacial/efectos de los fármacos , Animales , Hipocampo/metabolismo , Masculino , Trastornos de la Memoria/inducido químicamente , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/uso terapéutico
2.
Neurobiol Aging ; 62: 130-145, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29149631

RESUMEN

Regulation of the amyloid precursor protein (APP) processing by α- and ß-secretases is of special interest to Alzheimer's disease (AD), as these proteases prevent or mediate amyloid beta formation, respectively. Neuroinflammation is also implicated in AD. Our data demonstrate that the endogenous mediator of inflammation prostaglandin J2 (PGJ2) promotes full-length APP (FL-APP) processing by α- and ß-secretases. The decrease in FL-APP was independent of proteasomal, lysosomal, calpain, caspase, and γ-secretase activities. Moreover, PGJ2-treatment promoted cleavage of secreted APP, specifically sAPPα and sAPPß, generated by α and ß-secretase, respectively. Notably, PGJ2-treatment induced caspase-dependent cleavage of sAPPß. Mechanistically, PGJ2-treatment selectively diminished mature (O- and N-glycosylated) but not immature (N-glycosylated only) FL-APP. PGJ2-treatment also increased the overall levels of protein O-GlcNAcylation, which occurs within the nucleocytoplasmic compartment. It is known that APP undergoes O-GlcNAcylation and that the latter protects proteins from proteasomal degradation. Our results suggest that by increasing protein O-GlcNAcylation levels, PGJ2 renders mature APP less prone to proteasomal degradation, thus shunting APP toward processing by α- and ß-secretases.


Asunto(s)
Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/fisiología , Precursor de Proteína beta-Amiloide/metabolismo , Prostaglandina D2/análogos & derivados , Animales , Caspasas/fisiología , Células Cultivadas , Citoplasma/metabolismo , Femenino , Glicosilación , Humanos , Inflamación/etiología , Inflamación/metabolismo , Masculino , Prostaglandina D2/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Ratas Sprague-Dawley , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...