Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Nat Methods ; 20(12): 1971-1979, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37884795

RESUMEN

Brillouin microscopy is an emerging optical elastography technique capable of assessing mechanical properties of biological samples in a three-dimensional, all-optical and noncontact fashion. The typically weak Brillouin scattering signal can be substantially enhanced via a stimulated Brillouin scattering (SBS) process; however, current implementations require high pump powers, which prohibit applications to photosensitive or live imaging of biological samples. Here we present a pulsed SBS scheme that takes advantage of the nonlinearity of the pump-probe interaction. In particular, we show that the required pump laser power can be decreased ~20-fold without affecting the signal levels or spectral precision. We demonstrate the low phototoxicity and high specificity of our pulsed SBS approach by imaging, with subcellular detail, sensitive single cells, zebrafish larvae, mouse embryos and adult Caenorhabditis elegans. Furthermore, our method permits observing the mechanics of organoids and C. elegans embryos over time, opening up further possibilities for the field of mechanobiology.


Asunto(s)
Caenorhabditis elegans , Microscopía , Animales , Ratones , Pez Cebra , Luz , Rayos Láser
3.
J Mammary Gland Biol Neoplasia ; 28(1): 17, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37450065

RESUMEN

On 8 December 2022 the organizing committee of the European Network for Breast Development and Cancer labs (ENBDC) held its fifth annual Think Tank meeting in Amsterdam, the Netherlands. Here, we embraced the opportunity to look back to identify the most prominent breakthroughs of the past ten years and to reflect on the main challenges that lie ahead for our field in the years to come. The outcomes of these discussions are presented in this position paper, in the hope that it will serve as a summary of the current state of affairs in mammary gland biology and breast cancer research for early career researchers and other newcomers in the field, and as inspiration for scientists and clinicians to move the field forward.


Asunto(s)
Neoplasias de la Mama , Glándulas Mamarias Humanas , Humanos , Femenino , Mama , Biología
4.
Dev Cell ; 58(7): 616-632.e6, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-36990090

RESUMEN

3D cell cultures, in particular organoids, are emerging models in the investigation of healthy or diseased tissues. Understanding the complex cellular sociology in organoids requires integration of imaging modalities across spatial and temporal scales. We present a multi-scale imaging approach that traverses millimeter-scale live-cell light microscopy to nanometer-scale volume electron microscopy by performing 3D cell cultures in a single carrier that is amenable to all imaging steps. This allows for following organoids' growth, probing their morphology with fluorescent markers, identifying areas of interest, and analyzing their 3D ultrastructure. We demonstrate this workflow on mouse and human 3D cultures and use automated image segmentation to annotate and quantitatively analyze subcellular structures in patient-derived colorectal cancer organoids. Our analyses identify local organization of diffraction-limited cell junctions in compact and polarized epithelia. The continuum-resolution imaging pipeline is thus suited to fostering basic and translational organoid research by simultaneously exploiting the advantages of light and electron microscopy.


Asunto(s)
Técnicas de Cultivo Tridimensional de Células , Microscopía , Organoides , Animales , Humanos , Ratones , Técnicas de Cultivo Tridimensional de Células/métodos , Microscopía Electrónica , Organoides/diagnóstico por imagen , Organoides/fisiología , Organoides/ultraestructura , Neoplasias Colorrectales/patología
5.
Methods Mol Biol ; 2471: 185-194, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35175597

RESUMEN

The growth of organoid cultures from primary donor tissue is able to recapitulate the original tissue morphology, heterogeneity, and characteristics. Close study of these cultures grants a deeper understanding of the chain of events occurring during disease progression and healthy tissue development. While patient derived organoids are particularly suited to assay for novel treatment options, organoids obtained from model organisms are perfectly suited to establish in-depth analysis technology, including longitudinal imaging approaches, as well as proof of principle studies that rely on a steady source of primary tissue. All these approaches profit from advancements in technology to manipulate cells within an organoid.Here we present an optimized protocol to generate, culture, and transduce 3D acini obtained from mouse primary mammary epithelial cells via viral vectors. Applying this method, a few cells within the preserved organoid can be marked, changed, and tracked within an unaltered neighboring environment of non-transduced cells to better understand processes like, for instance, tumor initiation.


Asunto(s)
Células Acinares , Glándulas Mamarias Animales , Animales , Células Epiteliales , Glándulas Mamarias Animales/citología , Ratones , Organoides , Transducción Genética
6.
Mol Syst Biol ; 17(10): e10141, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34694069

RESUMEN

Tumor relapse from treatment-resistant cells (minimal residual disease, MRD) underlies most breast cancer-related deaths. Yet, the molecular characteristics defining their malignancy have largely remained elusive. Here, we integrated multi-omics data from a tractable organoid system with a metabolic modeling approach to uncover the metabolic and regulatory idiosyncrasies of the MRD. We find that the resistant cells, despite their non-proliferative phenotype and the absence of oncogenic signaling, feature increased glycolysis and activity of certain urea cycle enzyme reminiscent of the tumor. This metabolic distinctiveness was also evident in a mouse model and in transcriptomic data from patients following neo-adjuvant therapy. We further identified a marked similarity in DNA methylation profiles between tumor and residual cells. Taken together, our data reveal a metabolic and epigenetic memory of the treatment-resistant cells. We further demonstrate that the memorized elevated glycolysis in MRD is crucial for their survival and can be targeted using a small-molecule inhibitor without impacting normal cells. The metabolic aberrances of MRD thus offer new therapeutic opportunities for post-treatment care to prevent breast tumor recurrence.


Asunto(s)
Neoplasias de la Mama , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Femenino , Humanos , Ratones , Recurrencia Local de Neoplasia , Neoplasia Residual/genética
7.
J Mol Med (Berl) ; 99(10): 1413-1426, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34129057

RESUMEN

Expression of the phosphatase of regenerating liver-3 (PRL-3) is known to promote tumor growth in gastrointestinal adenocarcinomas, and the incidence of tumor formation upon inflammatory events correlates with PRL-3 levels in mouse models. These carcinomas and their onset are associated with the impairment of intestinal cell homeostasis, which is regulated by a balanced number of Paneth cells and Lgr5 expressing intestinal stem cells (Lgr5+ ISCs). Nevertheless, the consequences of PRL-3 overexpression on cellular homeostasis and ISC fitness in vivo are unexplored. Here, we employ a doxycycline-inducible PRL-3 mouse strain to show that aberrant PRL-3 expression within a non-cancerous background leads to the death of Lgr5+ ISCs and to Paneth cell expansion. A higher dose of PRL-3, resulting from homozygous expression, led to mice dying early. A primary 3D intestinal culture model obtained from these mice confirmed the loss of Lgr5+ ISCs upon PRL-3 expression. The impaired intestinal organoid formation was rescued by a PRL inhibitor, providing a functional link to the observed phenotypes. These results demonstrate that elevated PRL-3 phosphatase activity in healthy intestinal epithelium impairs intestinal cell homeostasis, which correlates this cellular mechanism of tumor onset with PRL-3-mediated higher susceptibility to tumor formation upon inflammatory or mutational events.Key messages• Transgenic mice homozygous for PRL-3 overexpression die early.• PRL-3 heterozygous mice display disrupted intestinal self-renewal capacity.• PRL-3 overexpression alone does not induce tumorigenesis in the mouse intestine.• PRL-3 activity leads to the death of Lgr5+ ISCs and Paneth cell expansion.• Impairment of cell homeostasis correlates PRL-3 action with tumor onset mechanisms.


Asunto(s)
Homeostasis/fisiología , Proteínas Inmediatas-Precoces/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Modelos Animales de Enfermedad , Femenino , Humanos , Mucosa Intestinal/patología , Intestinos/patología , Masculino , Ratones , Ratones Transgénicos , Organoides/metabolismo , Organoides/patología , Células de Paneth/metabolismo , Células de Paneth/patología , Transducción de Señal/fisiología , Células Madre/metabolismo , Células Madre/patología
8.
J Cell Biol ; 220(9)2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34160561

RESUMEN

Cells are 3D objects. Therefore, volume EM (vEM) is often crucial for correct interpretation of ultrastructural data. Today, scanning EM (SEM) methods such as focused ion beam (FIB)-SEM are frequently used for vEM analyses. While they allow automated data acquisition, precise targeting of volumes of interest within a large sample remains challenging. Here, we provide a workflow to target FIB-SEM acquisition of fluorescently labeled cells or subcellular structures with micrometer precision. The strategy relies on fluorescence preservation during sample preparation and targeted trimming guided by confocal maps of the fluorescence signal in the resin block. Laser branding is used to create landmarks on the block surface to position the FIB-SEM acquisition. Using this method, we acquired volumes of specific single cells within large tissues such as 3D cultures of mouse mammary gland organoids, tracheal terminal cells in Drosophila melanogaster larvae, and ovarian follicular cells in adult Drosophila, discovering ultrastructural details that could not be appreciated before.


Asunto(s)
Drosophila melanogaster/ultraestructura , Células de la Granulosa/ultraestructura , Glándulas Mamarias Animales/ultraestructura , Microscopía Electrónica de Rastreo/métodos , Coloración y Etiquetado/métodos , Células Tecales/ultraestructura , Tráquea/ultraestructura , Animales , Drosophila melanogaster/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Femenino , Expresión Génica , Genes Reporteros , Células de la Granulosa/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Larva/metabolismo , Larva/ultraestructura , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Glándulas Mamarias Animales/metabolismo , Ratones , Microscopía Electrónica de Rastreo/instrumentación , Organoides/metabolismo , Organoides/ultraestructura , Análisis de la Célula Individual/instrumentación , Análisis de la Célula Individual/métodos , Células Tecales/metabolismo , Tráquea/metabolismo , Flujo de Trabajo , Proteína Fluorescente Roja
9.
Commun Biol ; 4(1): 556, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976362

RESUMEN

Preclinical breast tumor models are an invaluable tool to systematically study tumor progression and treatment response, yet methods to non-invasively monitor the involved molecular and mechanistic properties under physiologically relevant conditions are limited. Here we present an intravital mesoscopic fluorescence molecular tomography (henceforth IFT) approach that is capable of tracking fluorescently labeled tumor cells in a quantitative manner inside the mammary gland of living mice. Our mesoscopic approach is entirely non-invasive and thus permits prolonged observational periods of several months. The relatively high sensitivity and spatial resolution further enable inferring the overall number of oncogene-expressing tumor cells as well as their tumor volume over the entire cycle from early tumor growth to residual disease following the treatment phase. Our IFT approach is a promising method for studying tumor growth dynamics in a quantitative and longitudinal fashion in-vivo.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Microscopía Intravital/métodos , Tomografía Computarizada por Rayos X/métodos , Animales , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Fluorescencia , Humanos , Ratones , Ratones Endogámicos C57BL , Tomografía/métodos , Carga Tumoral/fisiología
10.
Elife ; 92020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32690136

RESUMEN

Cancer clone evolution takes place within tissue ecosystem habitats. But, how exactly tumors arise from a few malignant cells within an intact epithelium is a central, yet unanswered question. This is mainly due to the inaccessibility of this process to longitudinal imaging together with a lack of systems that model the progression of a fraction of transformed cells within a tissue. Here, we developed a new methodology based on primary mouse mammary epithelial acini, where oncogenes can be switched on in single cells within an otherwise normal epithelial cell layer. We combine this stochastic breast tumor induction model with inverted light-sheet imaging to study single-cell behavior for up to four days and analyze cell fates utilizing a newly developed image-data analysis workflow. The power of this integrated approach is illustrated by us finding that small local clusters of transformed cells form tumors while isolated transformed cells do not.


There are now drugs to treat many types of cancer, but questions still remain around how these diseases start in the first place. Researchers think that tumor growth begins when a single cell suffers damage to certain sites in its DNA that eventually cause it to divide uncontrollably. That damaged cell, and its descendants, go on to form a lump, or tumor. The trouble with proving this theory is that it is hard to watch it happening in real time. Doctors usually only meet people with cancer when their tumors start to cause health problems. By this point, the tumors contain millions of cells. A way to watch the very beginnings of a cancer could reveal risk factors within a tissue that foster the growth of a tumor. But first, researchers need to test their theory about how the disease begins in the first place. One way to do this is to surround a single cancer cell with healthy cells and watch what happens next. To do this, Alladin, Chaible et al. took healthy cells from the breast tissue of mice and grew them in the laboratory into mini-organs called organoids. These organoids share a lot of features with actual mouse breast tissue; they can even make milk if given the right hormones. Once the organoids were ready, Alladin, Chaible et al then started modifying a small number of single cells inside them by switching on genes called oncogenes, which are known to drive cancer formation in humans. Using fluorescent proteins and a sheet of laser light it was possible to watch what happened to the cells over time. This revealed that, even though all the oncogene-driven single cells received the same signals, not all of them started to divide uncontrollably. In fact, a single modified cell had a low chance of forming a tumor on its own. The more oncogene-driven cells there were near to each other, the more likely they were to form tumors. Alladin, Chaible et al. think that this is because the healthy tissue interacts with the modified, oncogene-driven cells to suppress tumor formation. It is only when a larger number of modified cells group together and start to communicate with each other that they can override the inhibitory messages of the healthy tissue. How healthy tissue stops single modified cells from forming tumors is not yet clear. But, with this new mini-organ system, researchers now have the tools to investigate. In the future, this could lead to new strategies to stop cancer before it has a chance to get started.


Asunto(s)
Células Acinares/citología , Neoplasias de la Mama/genética , Neoplasias de la Mama/fisiopatología , Rastreo Celular/métodos , Células Epiteliales/citología , Glándulas Mamarias Humanas/citología , Células Madre Neoplásicas/citología , Animales , Femenino , Humanos , Ratones , Microscopía/métodos , Modelos Animales
11.
J Clin Invest ; 127(6): 2091-2105, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28504653

RESUMEN

Tumor recurrence is the leading cause of breast cancer-related death. Recurrences are largely driven by cancer cells that survive therapeutic intervention. This poorly understood population is referred to as minimal residual disease. Here, using mouse models that faithfully recapitulate human disease together with organoid cultures, we have demonstrated that residual cells acquire a transcriptionally distinct state from normal epithelium and primary tumors. Gene expression changes and functional characterization revealed altered lipid metabolism and elevated ROS as hallmarks of the cells that survive tumor regression. These residual cells exhibited increased oxidative DNA damage, potentiating the acquisition of somatic mutations during hormonal-induced expansion of the mammary cell population. Inhibition of either cellular fatty acid synthesis or fatty acid transport into mitochondria reduced cellular ROS levels and DNA damage, linking these features to lipid metabolism. Direct perturbation of these hallmarks in vivo, either by scavenging ROS or by halting the cyclic mammary cell population expansion, attenuated tumor recurrence. Finally, these observations were mirrored in transcriptomic and histological signatures of residual cancer cells from neoadjuvant-treated breast cancer patients. These results highlight the potential of lipid metabolism and ROS as therapeutic targets for reducing tumor recurrence in breast cancer patients.


Asunto(s)
Neoplasias de la Mama/metabolismo , Recurrencia Local de Neoplasia/metabolismo , Animales , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Lapatinib , Metabolismo de los Lípidos , Redes y Vías Metabólicas , Ratones , Recurrencia Local de Neoplasia/prevención & control , Neoplasia Residual , Estrés Oxidativo , Progesterona/farmacología , Quinazolinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Transcriptoma , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Nat Genet ; 49(1): 65-74, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27869826

RESUMEN

Extensive prior research focused on somatic copy-number alterations (SCNAs) affecting cancer genes, yet the extent to which recurrent SCNAs exert their influence through rearrangement of cis-regulatory elements (CREs) remains unclear. Here we present a framework for inferring cancer-related gene overexpression resulting from CRE reorganization (e.g., enhancer hijacking) by integrating SCNAs, gene expression data and information on topologically associating domains (TADs). Analysis of 7,416 cancer genomes uncovered several pan-cancer candidate genes, including IRS4, SMARCA1 and TERT. We demonstrate that IRS4 overexpression in lung cancer is associated with recurrent deletions in cis, and we present evidence supporting a tumor-promoting role. We additionally pursued cancer-type-specific analyses and uncovered IGF2 as a target for enhancer hijacking in colorectal cancer. Recurrent tandem duplications intersecting with a TAD boundary mediate de novo formation of a 3D contact domain comprising IGF2 and a lineage-specific super-enhancer, resulting in high-level gene activation. Our framework enables systematic inference of CRE rearrangements mediating dysregulation in cancer.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Elementos de Facilitación Genéticos/genética , Regulación Neoplásica de la Expresión Génica , Proteínas Sustrato del Receptor de Insulina/genética , Factor II del Crecimiento Similar a la Insulina/genética , Neoplasias/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Regiones Promotoras Genéticas
14.
Nat Methods ; 13(12): 997-1000, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27749839

RESUMEN

We present a baculovirus-based protein engineering method that enables site-specific introduction of unique functionalities in a eukaryotic protein complex recombinantly produced in insect cells. We demonstrate the versatility of this efficient and robust protein production platform, 'MultiBacTAG', (i) for the fluorescent labeling of target proteins and biologics using click chemistries, (ii) for glycoengineering of antibodies, and (iii) for structure-function studies of novel eukaryotic complexes using single-molecule Förster resonance energy transfer as well as site-specific crosslinking strategies.


Asunto(s)
Proteínas Fluorescentes Verdes/biosíntesis , Complejos Multiproteicos/biosíntesis , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/biosíntesis , Proteínas Virales/biosíntesis , Animales , Baculoviridae/genética , Baculoviridae/metabolismo , Técnicas de Cultivo de Célula , Transferencia Resonante de Energía de Fluorescencia/métodos , Código Genético , Vectores Genéticos , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Humanos , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Plásmidos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Células Sf9 , Spodoptera , Proteínas Virales/química , Proteínas Virales/genética
15.
Cell Rep ; 15(12): 2679-91, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27292643

RESUMEN

Chromosome instability (CIN) is associated with poor survival and therapeutic outcome in a number of malignancies. Despite this correlation, CIN can also lead to growth disadvantages. Here, we show that simultaneous overexpression of the mitotic checkpoint protein Mad2 with Kras(G12D) or Her2 in mammary glands of adult mice results in mitotic checkpoint overactivation and a delay in tumor onset. Time-lapse imaging of organotypic cultures and pathologic analysis prior to tumor establishment reveals error-prone mitosis, mitotic arrest, and cell death. Nonetheless, Mad2 expression persists and increases karyotype complexity in Kras tumors. Faced with the selective pressure of oncogene withdrawal, Mad2-positive tumors have a higher frequency of developing persistent subclones that avoid remission and continue to grow.


Asunto(s)
Inestabilidad Cromosómica , Proteínas Mad2/metabolismo , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Oncogenes , Aneuploidia , Animales , Apoptosis , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Carcinogénesis/metabolismo , Carcinogénesis/patología , Puntos de Control del Ciclo Celular , Proliferación Celular , Células Cultivadas , Segregación Cromosómica/genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Humanos , Ratones , Mitosis , Fenotipo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Receptor ErbB-2 , Huso Acromático/metabolismo , Imagen de Lapso de Tiempo , Transgenes
16.
Cold Spring Harb Protoc ; 2015(6): 505-7, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26034311

RESUMEN

Genetically engineered mouse models (GEMMs) are attractive for the study of cancer; however, they can be time-consuming and expensive to produce and maintain. Thus, in certain contexts, the use of in vitro culture systems of tumor cells may provide an efficient and effective means to test hypotheses before assessment in or to complement discoveries in GEMMs. This introduction will briefly review the issues pertaining to in vitro analyses of primary cancer cells and highlight several "best practice" protocols that can be used when working with diverse types of carcinomas.


Asunto(s)
Técnicas de Cultivo de Célula , Neoplasias/patología , Células Tumorales Cultivadas/patología , Animales , Modelos Animales de Enfermedad , Ratones
17.
Cold Spring Harb Protoc ; 2015(5): 457-61, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25934933

RESUMEN

Three-dimensional (3D) culture systems represent an important means to study untransformed and neoplastic cells. These cultures can recapitulate organotypic growth by developing a polarized phenotype, forming specialized cell-cell contacts, and attaching to an underlying basement membrane. All of these features are necessary for the proper control of single-cell behavior within a growing structure. By employing 3D cultures, specific aspects of single cells, such as their capacity to proliferate, survive, and differentiate, can be followed in real time. This protocol describes how to generate 3D cultures of primary mammary epithelial cells.


Asunto(s)
Células Epiteliales/fisiología , Técnicas de Cultivo de Órganos/métodos , Animales , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Técnicas Citológicas/métodos , Humanos
18.
Genes Dev ; 23(14): 1677-88, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19605689

RESUMEN

The advent of targeted therapies for cancer has provoked interest in experimental models for the systematic study of oncogene dependence. To that end, we developed a three-dimensional (3D) culture system to analyze the responses of primary mouse mammary epithelial cells to the induction and deinduction of oncogenes. Mammary cells derived from normal virgin mice, or from tritransgenic mice (TetO-MYC;TetO-Kras(G12D);MMTV-rtTA) in which MYC and mutant Kras can be regulated by doxycycline, develop from single cells into polarized acini. Lumen formation occurs without apparent apoptosis, and the hollow spheres of cells enlarge by division, with metaphase plates oriented perpendicularly to the apical surface. When MYC and Kras(G12D) are induced, the acini enlarge and form solid, depolarized spheres. Upon deinduction of MYC and Kras(G12D) the solid structures regress, leaving a repolarized monolayer of viable cells. These cells display a phenotype consistent with progenitors of mammary epithelium: They exclude Hoechst dye 33342, and reform acini in 3D cultures and repopulate mammary fat pads more efficiently than cells harvested from uninduced acini. Moreover, cells in the surviving spheres retain the ability to respond to reinduction and thus may represent the type of cells that give rise to recurrent tumors.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Supervivencia Celular/fisiología , Regulación de la Expresión Génica , Glándulas Mamarias Animales/citología , Oncogenes/genética , Transgenes/fisiología , Animales , Antibacterianos/farmacología , Apoptosis , Bencimidazoles/metabolismo , Caspasa 3/metabolismo , División Celular , Doxiciclina/farmacología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Células Madre/citología , Activación Transcripcional
19.
Science ; 321(5897): 1841-4, 2008 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-18755941

RESUMEN

The acquisition of metastatic ability by tumor cells is considered a late event in the evolution of malignant tumors. We report that untransformed mouse mammary cells that have been engineered to express the inducible oncogenic transgenes MYC and Kras(D12), or polyoma middle T, and introduced into the systemic circulation of a mouse can bypass transformation at the primary site and develop into metastatic pulmonary lesions upon immediate or delayed oncogene induction. Therefore, previously untransformed mammary cells may establish residence in the lung once they have entered the bloodstream and may assume malignant growth upon oncogene activation. Mammary cells lacking oncogenic transgenes displayed a similar capacity for long-term residence in the lungs but did not form ectopic tumors.


Asunto(s)
Células Epiteliales/citología , Neoplasias Pulmonares/secundario , Glándulas Mamarias Animales/citología , Metástasis de la Neoplasia , Siembra Neoplásica , Oncogenes , Adenocarcinoma/patología , Adenocarcinoma/secundario , Animales , Antígenos Transformadores de Poliomavirus/genética , Proliferación Celular , Supervivencia Celular , Transformación Celular Neoplásica , Regulación Neoplásica de la Expresión Génica , Genes myc , Genes ras , Neoplasias Pulmonares/patología , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Transgénicos , Células Neoplásicas Circulantes , Transgenes
20.
Neoplasia ; 10(7): 653-62, 1 p following 662, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18592025

RESUMEN

We recently reported the introduction of oncogene-expressing avian retroviruses into somatic mammary cells in mice susceptible to infection by transgenic expression of tva, encoding the receptor for subgroup A avian leukosis-sarcoma virus (ALSV). Because ALSV-based vectors poorly infect nondividing cells, they are inadequate for studying carcinogenesis initiated from nonproliferative cells (e.g., stem cells). Lentivirus pseudotyped with the envelope protein of ALSV infects nondividing TVA-producing cells in culture but has not previously been tested for introducing genes in vivo. Here, we demonstrate that these vectors infected mammary cells in vivo when injected into the mammary ductal lumen of mice expressing tva under the control of the keratin 19 promoter. Furthermore, intraductal injection of this lentiviral vector carrying the polyoma middle T antigen gene induced atypical ductal hyperplasia and ductal carcinoma in situ-like premalignant lesions in 30 days and palpable invasive tumors at a median latency of 3.3 months. Induced tumors were a mixed epithelial/myoepithelial histologic diagnosis, occasionally displayed squamous metaplasia, and were estrogen receptor-negative. This work demonstrates the first use of a lentiviral vector to introduce oncogenes for modeling cancer in mice, and this vector system may be especially suitable for introducing genetic alterations into quiescent cells in vivo.


Asunto(s)
Antígenos Transformadores de Poliomavirus/genética , Neoplasias de la Mama/genética , Vectores Genéticos , Lentivirus/genética , Oncogenes , Alpharetrovirus/genética , Animales , Antígenos Transformadores de Poliomavirus/metabolismo , Neoplasias de la Mama/patología , Transformación Celular Viral/genética , Células Cultivadas , VIH/genética , Queratina-9/genética , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/patología , Ratones , Ratones Transgénicos , Células 3T3 NIH , Regiones Promotoras Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...