Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1317522, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38524132

RESUMEN

Cell-based cancer immunotherapy has achieved significant advancements, providing a source of hope for cancer patients. Notwithstanding the considerable progress in cell-based immunotherapy, the persistently low response rates and the exorbitant costs associated with their implementation still present a formidable challenge in clinical settings. In the landscape of cell-based cancer immunotherapies, an uncharted territory involves Type 2 innate lymphoid cells (ILC2s) and interleukin-33 (IL-33) which promotes ILC2 functionality, recognized for their inherent ability to enhance immune responses. Recent discoveries regarding their role in actuating cytolytic T lymphocyte responses, including curbing tumor growth rates and hindering metastasis, have added a new dimension to our understanding of the IL-33/ILC2 axis. These recent insights may hold significant promise for ILC2 cell-based immunotherapy. Nevertheless, the prospect of adoptively transferring ILC2s to confer immune protection against tumors has yet to be investigated. The present study addresses this hypothesis, revealing that ILC2s isolated from the lungs of tumor-bearing mice, and tumor infiltrating ILC2s when adoptively transferred after tumor establishment at a ratio of one ILC2 per sixty tumor cells, leads to an influx of tumor infiltrating CD4+ and CD8+ T lymphocytes as well as tumor infiltrating eosinophils resulting in a remarkable reduction in tumor growth. Moreover, we find that post-adoptive transfer of ILC2s, the number of tumor infiltrating ILC2s is inversely proportional to tumor size. Finally, we find corollaries of the IL-33/ILC2 axis enhancing the infiltration of eosinophils in human prostate carcinomas patients' expressing high levels of IL-33 versus those expressing low levels of IL-33. Our results underscore the heightened efficacy of adoptively transferred ILC2s compared to alternative approaches, revealing an approximately one hundred fifty-fold superiority on a cell-per-cell basis over CAR T-cells in the specific targeting and elimination of tumors within the same experimental model. Overall, this study demonstrates the functional significance of ILC2s in cancer immunosurveillance and provides the proof of concept of the potential utility of ILC2 cell-based cancer immunotherapies.


Asunto(s)
Inmunidad Innata , Neoplasias , Masculino , Humanos , Ratones , Animales , Citocinas , Interleucina-33 , Linfocitos , Neoplasias/terapia
2.
Stem Cell Reports ; 19(4): 456-468, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38552634

RESUMEN

The risk of iatrogenic disease is often underestimated as a concern in contemporary medical procedures, encompassing tissue and organ transplantation, stem cell therapies, blood transfusions, and the administration of blood-derived products. In this context, despite the prevailing belief that Alzheimer's disease (AD) manifests primarily in familial and sporadic forms, our investigation reveals an unexpected transplantable variant of AD in a preclinical context, potentially indicating iatrogenic transmission in AD patients. Through adoptive transplantation of donor bone marrow stem cells carrying a mutant human amyloid precursor protein (APP) transgene into either APP-deficient knockout or normal recipient animals, we observed rapid development of AD pathological hallmarks. These pathological features were significantly accelerated and emerged within 6-9 months post transplantation and included compromised blood-brain barrier integrity, heightened cerebral vascular neoangiogenesis, elevated brain-associated ß-amyloid levels, and cognitive impairment. Furthermore, our findings underscore the contribution of ß-amyloid burden originating outside of the central nervous system to AD pathogenesis within the brain. We conclude that stem cell transplantation from donors harboring a pathogenic mutant allele can effectively transfer central nervous system diseases to healthy recipients, mirroring the pathogenesis observed in the donor. Consequently, our observations advocate for genomic sequencing of donor specimens prior to tissue, organ, or stem cell transplantation therapies, as well as blood transfusions and blood-derived product administration, to mitigate the risk of iatrogenic diseases.


Asunto(s)
Enfermedad de Alzheimer , Animales , Humanos , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Trasplante de Células Madre/efectos adversos , Enfermedad Iatrogénica , Ratones Transgénicos , Modelos Animales de Enfermedad
3.
Commun Biol ; 7(1): 12, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172434

RESUMEN

Type 2 innate lymphoid cells (ILC2s) perform vital functions in orchestrating humoral immune responses, facilitating tissue remodelling, and ensuring tissue homeostasis. Additionally, in a role that has garnered considerably less attention, ILC2s can also enhance Th1-related cytolytic T lymphocyte immune responses against tumours. Studies have thus far generally failed to address the mystery of how one ILC2 cell-type can participate in a multiplicity of functions. Here we utilized single cell RNA sequencing analysis to create the first comprehensive atlas of naïve and tumour-associated lung ILC2s and discover multiple unique subtypes of ILC2s equipped with developmental gene programs that become skewed during tumour expansion favouring inflammation, antigen processing, immunological memory and Th1-related anti-tumour CTL responses. The discovery of these new subtypes of ILC2s challenges current paradigms of ILC2 biology and provides an explanation for their diversity of function.


Asunto(s)
Inmunidad Innata , Neoplasias , Humanos , Linfocitos , Pulmón/patología , Inflamación/patología , Neoplasias/genética , Neoplasias/patología
4.
Front Pharmacol ; 14: 1119620, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37637416

RESUMEN

Curcuphenol, a common component of the culinary spices, naturally found in marine invertebrates and plants, has been identified as a novel candidate for reversing immune escape by restoring expression of the antigen presentation machinery (APM) in invasive cancers, thereby resurrecting the immune recognition of metastatic tumours. Two synthetic curcuphenol analogues, were prepared by informed design that demonstrated consistent induction of APM expression in metastatic prostate and lung carcinoma cells. Both analogues were subsequently found to possess a previously undescribed histone deacetylase (HDAC)-enhancing activity. Remarkably, the H3K27ac ChIPseq analysis of curcuphenol-treated cells reveals that the induced epigenomic marks closely resemble the changes in genome-wide pattern observed with interferon-γ, a cytokine instrumental for orchestrating innate and adaptive immunity. These observations link dietary components to modifying epigenetic programs that modulate gene expression guiding poised immunity.

5.
Sci Rep ; 13(1): 13079, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37567897

RESUMEN

The interplay between AMPA-type glutamate receptors (AMPARs) and major histocompatibility complex class I (MHC-I) proteins in regulating synaptic signaling is a crucial aspect of central nervous system (CNS) function. In this study, we investigate the significance of the cytoplasmic tail of MHC-I in synaptic signaling within the CNS and its impact on the modulation of synaptic glutamate receptor expression. Specifically, we focus on the Y321 to F substitution (Y321F) within the conserved cytoplasmic tyrosine YXXΦ motif, known for its dual role in endocytosis and cellular signaling of MHC-I. Our findings reveal that the Y321F substitution influences the expression of AMPAR subunits GluA2/3 and leads to alterations in the phosphorylation of key kinases, including Fyn, Lyn, p38, ERK1/2, JNK1/2/3, and p70 S6 kinase. These data illuminate the crucial role of MHC-I in AMPAR function and present a novel mechanism by which MHC-I integrates extracellular cues to modulate synaptic plasticity in neurons, which ultimately underpins learning and memory.


Asunto(s)
Ácido Glutámico , Transducción de Señal , Ácido Glutámico/metabolismo , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Neuronas/metabolismo , Receptores AMPA/metabolismo , Complejo Mayor de Histocompatibilidad
6.
Front Pharmacol ; 14: 1119607, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37256225

RESUMEN

Genetic and epigenetic events have been implicated in the downregulation of the cellular antigen processing and presentation machinery (APM), which in turn, has been associated with cancer evasion of the immune system. When these essential components are lacking, cancers develop the ability to subvert host immune surveillance allowing cancer cells to become invisible to the immune system and, in turn, promote cancer metastasis. Here we describe and validate the first high-throughput cell-based screening assay to identify chemical extracts and unique chemical entities that reverse the downregulation of APM components in cell lines derived from metastatic tumours. Through the screening of a library of 480 marine invertebrate extracts followed by bioassay-guided fractionation, curcuphenol, a common sesquiterpene phenol derived from turmeric, was identified as the active compound of one of the extracts. We demonstrate that curcuphenol induces the expression of the APM components, TAP-1 and MHC-I molecules, in cell lines derived from both metastatic prostate and lung carcinomas. Turmeric and curcumins that contain curcuphenol have long been utilized not only as a spice in the preparation of food, but also in traditional medicines for treating cancers. The remarkable discovery that a common component of spices can increase the expression of APM components in metastatic tumour cells and, therefore reverse immune-escape mechanisms, provides a rationale for the development of foods and advanced nutraceuticals as therapeutic candidates for harnessing the power of the immune system to recognize and destroy metastatic cancers.

7.
Sci Rep ; 13(1): 6448, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37081001

RESUMEN

Major histocompatibility complex class I (MHC-I) proteins are expressed in neurons, where they regulate synaptic plasticity. However, the mechanisms by which MHC-I functions in the CNS remains unknown. Here we describe the first structural analysis of a MHC-I protein, to resolve underlying mechanisms that explains its function in the brain. We demonstrate that Y321F mutation of the conserved cytoplasmic tyrosine-based endocytosis motif YXXΦ in MHC-I affects spine density and synaptic structure without affecting neuronal complexity in the hippocampus, a region of the brain intimately involved in learning and memory. Furthermore, the impact of the Y321F substitution phenocopies MHC-I knock-out (null) animals, demonstrating that reverse, outside-in signalling events sensing the external environment is the major mechanism that conveys this information to the neuron and this has a previously undescribed yet essential role in the regulation of synaptic plasticity.


Asunto(s)
Encéfalo , Neuronas , Animales , Encéfalo/metabolismo , Neuronas/metabolismo , Plasticidad Neuronal/fisiología , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Transducción de Señal , Hipocampo/metabolismo
8.
Front Pharmacol ; 13: 795176, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35685639

RESUMEN

Cell surface calcium (Ca2+) channels permit Ca2+ ion influx, with Ca2+ taking part in cellular functions such as proliferation, survival, and activation. The expression of voltage-dependent Ca2+ (CaV) channels may modulate the growth of hematologic cancers. Profile analysis of Ca2+ channels, with a focus on the Ca2+ release-activated Ca2+ (CRAC) and L-type CaV channels, was performed on RNA sequencing data from lymphoma cell lines and samples derived from patients with diffuse large B cell lymphoma (DLBCL). CaV1.2 expression was found to be elevated in classical Hodgkin lymphoma (CHL) cell lines when compared to other B cell lymphoma cell lines. In contrast, CHL exhibited reduced expression of ORAI2 and STIM2. In our differential expression analysis comparing activated B cell-like DLBCL (ABC-DLBCL) and germinal centre B cell-like DLBCL (GCB-DLBCL) patient samples, ABC-DLBCL revealed stronger expression of CaV1.3, whereas CaV1.1, CaV1.2, and CaV1.4 showed greater expression levels in GCB-DLBCL. Interestingly, no differences in ORAI/STIM expression were noted in the patient samples. As Ca2+ is known to bind to calmodulin, leading to calcineurin activation and the passage of nuclear factor of activated T cells (NFAT) to the cell nucleus, pathways for calcineurin, calmodulin, NFAT, and Ca2+ signaling were also analyzed by gene set enrichment analysis. The NFAT and Ca2+ signaling pathways were found to be upregulated in the CHL cell lines relative to other B cell lymphoma cell lines. Furthermore, the calmodulin and Ca2+ signaling pathways were shown to be downregulated in the ABC-DLBCL patient samples. The findings of this study suggest that L-type CaV channels and Ca2+-related pathways could serve as differentiating components for biologic therapies in targeted lymphoma treatments.

9.
Front Immunol ; 13: 982082, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36923728

RESUMEN

Emerging cancers are sculpted by neo-Darwinian selection for superior growth and survival but minimal immunogenicity; consequently, metastatic cancers often evolve common genetic and epigenetic signatures to elude immune surveillance. Immune subversion by metastatic tumours can be achieved through several mechanisms; one of the most frequently observed involves the loss of expression or mutation of genes composing the MHC-I antigen presentation machinery (APM) that yields tumours invisible to Cytotoxic T lymphocytes, the key component of the adaptive cellular immune response. Fascinating ethnographic and experimental findings indicate that cannabinoids inhibit the growth and progression of several categories of cancer; however, the mechanisms underlying these observations remain clouded in uncertainty. Here, we screened a library of cannabinoid compounds and found molecular selectivity amongst specific cannabinoids, where related molecules such as Δ9-tetrahydrocannabinol, cannabidiol, and cannabigerol can reverse the metastatic immune escape phenotype in vitro by inducing MHC-I cell surface expression in a wide variety of metastatic tumours that subsequently sensitizing tumours to T lymphocyte recognition. Remarkably, H3K27Ac ChIPseq analysis established that cannabigerol and gamma interferon induce overlapping epigenetic signatures and key gene pathways in metastatic tumours related to cellular senescence, as well as APM genes involved in revealing metastatic tumours to the adaptive immune response. Overall, the data suggest that specific cannabinoids may have utility in cancer immunotherapy regimens by overcoming immune escape and augmenting cancer immune surveillance in metastatic disease. Finally, the fundamental discovery of the ability of cannabinoids to alter epigenetic programs may help elucidate many of the pleiotropic medicinal effects of cannabinoids on human physiology.


Asunto(s)
Cannabinoides , Neoplasias , Humanos , Evasión Inmune , Inmunidad Adaptativa , Cannabinoides/farmacología
10.
EBioMedicine ; 71: 103503, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34534764

RESUMEN

BACKGROUND: Cognitive decline leading to dementia, accompanied by the accumulation of amyloid-beta (Aß) in neuritic plaques together with the appearance of neurofibrillary tangles (NFT) composed of hyperphosphorylated tau protein (tau), are previously noted hallmarks of Alzheimer's disease (AD). We previously discovered hypervascularity in brain specimens from AD patients and consistent with this observation, we demonstrated that overexpression of Aß drives cerebrovascular neoangiogenesis leading to hypervascularity and coincident tight-junction disruption and blood-brain barrier (BBB) leakiness in animal models of AD. We subsequently demonstrated that amyloid plaque burden and cerebrovascular pathogenesis subside when pro-angiogenic Aß levels are reduced. Based on these data, we propose a paradigm of AD etiology where, as a compensatory response to impaired cerebral blood flow (CBF), Aß triggers pathogenic cerebrovascular neoangiogenesis that underlies the conventional hallmarks of AD. Consequently, here we present evidence that repurposing anti-cancer drugs to modulate cerebrovascular neoangiogenesis, rather than directly targeting the amyloid cascade, may provide an effective treatment for AD and related vascular diseases of the brain. METHODS: We explored whether the anti-cancer drug, Axitinib, a small molecule tyrosine kinase inhibitor that targets vascular endothelial growth factor receptors (VEGFR) can inhibit aberrant cerebrovascular neoangiogenic changes, reduce Aß deposits and reverse cognitive decline in an animal model of AD. One month post-treatment with Axitinib, we employed a battery of tests to assess cognition and memory in aged Tg2576 AD mice and used molecular analysis to demonstrate reduction of amyloid plaques, BBB leakage, hypervascularity and associated disease pathology. FINDINGS: Targeting the pro-angiogenic pathway in AD using the cancer drug, Axitinib, dramatically reduced cerebrovascular neoangiogenesis, restored BBB integrity, resolved tight-junction pathogenesis, diminishes Aß depositions in plaques and effectively restores memory and cognitive performance in a preclinical mouse model of AD. INTERPRETATION: Modulation of neoangiogenesis, in an analogous approach to those used to treat aberrant vascularization in cancer and also in the wet form of age-related macular degeneration (AMD), provides an alternative therapeutic strategy for intervention in AD that warrants clinical investigation. FUNDING: None.


Asunto(s)
Enfermedad de Alzheimer/patología , Antineoplásicos/farmacología , Encéfalo/irrigación sanguínea , Encéfalo/patología , Neovascularización Patológica , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/etiología , Animales , Antineoplásicos/uso terapéutico , Axitinib/farmacología , Conducta Animal , Biomarcadores , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Monitoreo de Drogas , Técnica del Anticuerpo Fluorescente , Humanos , Inmunohistoquímica , Ratones , Neovascularización Patológica/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Uniones Estrechas/metabolismo , Distribución Tisular , Resultado del Tratamiento , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/metabolismo
11.
Front Neurosci ; 15: 596976, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149342

RESUMEN

The blood-brain barrier (BBB) hinders the distribution of therapeutics intended for treatment of diseases of the brain. Our previous studies demonstrated that that a soluble form of melanotransferrin (MTf; Uniprot P08582; also known as p97, MFI2, and CD228), a mammalian iron-transport protein, is an effective carrier for delivery of drug conjugates across the BBB into the brain and was the first BBB targeting delivery system to demonstrate therapeutic efficacy within the brain. Here, we performed a screen to identify peptides from MTf capable of traversing the BBB. We identified a highly conserved 12-amino acid peptide, termed MTfp, that retains the ability to cross the intact BBB intact, distributes throughout the parenchyma, and enter endosomes and lysosomes within neurons, astrocytes and microglia in the brain. This peptide may provide a platform for the transport of therapeutics to the CNS, and thereby offers new avenues for potential treatments of neuropathologies that are currently refractory to existing therapies.

12.
Sci Rep ; 11(1): 12233, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112824

RESUMEN

Type 2 innate lymphoid cells (ILC2s) were discovered approximately ten years ago and their clinical relevance is gaining greater importance. However, their successful isolation from mammalian tissues and in vitro culture and expansion continues to pose challenges. This is partly due to their scarcity compared to other leukocyte populations, but also because our current knowledge of ILC2 biology is incomplete. This study is focused on ST2+ IL-25Rlo lung resident ILC2s and demonstrate for the first time a methodology allowing mouse type 2 innate lymphoid cells to be cultured, and their numbers expanded in serum-free medium supplemented with Interleukins IL-33, IL-2, IL-7 and TSLP. The procedures described methods to isolate ILC2s and support their growth for up to a week while maintaining their phenotype. During this time, they significantly expand from low to high cell concentrations. Furthermore, for the first time, sub-cultures of primary ILC2 purifications in larger 24- and 6-well plates were undertaken in order to compare their growth in other media. In culture, ILC2s had doubling times of 21 h, a growth rate of 0.032 h-1 and could be sub-cultured in early or late phases of exponential growth. These studies form the basis for expanding ILC2 populations that will facilitate the study and potential applications of these rare cells under defined, serum-free conditions.


Asunto(s)
Técnicas de Cultivo de Célula , Medio de Cultivo Libre de Suero , Inmunidad Innata , Subgrupos Linfocitarios/inmunología , Subgrupos Linfocitarios/metabolismo , Animales , Biomarcadores , Células Cultivadas , Citocinas/biosíntesis , Subgrupos Linfocitarios/citología , Ratones
14.
Front Mol Biosci ; 8: 611367, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33869275

RESUMEN

The blood-brain barrier (BBB) hinders the distribution of therapeutics intended for treatment of neuroinflammation (NI) of the central nervous system. A twelve-amino acid peptide that transcytoses the BBB, termed MTfp, was chemically conjugated to siRNA to create a novel peptide-oligonucleotide conjugate (POC), directed to downregulate NOX4, a gene thought responsible for oxidative stress in ischemic stroke. The MTfp-NOX4 POC has the ability to cross the intact BBB and knockdown NOX4 expression in the brain. Following induction of ischemic stroke, animals pretreated with the POC exhibited significantly smaller infarcts; accompanied by increased protection against neurological deterioration and improved recovery. The data demonstrates that the MTfp can act as a nanomule to facilitate BBB transcytosis of siRNAs; where the NOX-4 specific siRNA moiety can elicit effective therapeutic knockdown of a gene responsible for oxidative stress in the central nervous system. This study is the first to conclusively demonstrate both siRNA-carrier delivery and therapeutic efficacy in any CNS disease model where the BBB remains intact and thus offers new avenues for potential treatments of oxidative stress underlying neuroinflammation in a variety of neuropathologies that are currently refractory to existing therapies.

15.
J Immunol ; 206(7): 1409-1417, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33753565

RESUMEN

Group 2 innate lymphoid cells (ILC2s) are a set of effectors that mediate the expulsion of helminthic parasites but also drive allergic lung inflammation. As innate agents, they do not recognize Ag, instead, they are sensitive to alarmin engagement, upon which they produce type 2 cytokines that amplify adaptive immunity. Their lymphoid identity appoints them as an intriguing group of unconventional cells; however, increasing evidence is unraveling a series of unprecedented functions that <5 years ago were unthinkable for ILC2s, such as acquiring a proinflammatory identity that enables them to support TH1 immune responses. Their plastic nature has allowed the characterization of ILC2s in more detail than ever; however, the novelty of ILC2 biology requires constant updates and recapitulations. This review provides an overview of ILC2s and describes memory ILC2, regulatory ILC2, inflammatory ILC2, and type 1 ILC2 subsets based on activation status, tissue environments, and function.


Asunto(s)
Linfocitos/inmunología , Células TH1/inmunología , Células Th2/inmunología , Animales , Microambiente Celular , Citocinas/metabolismo , Humanos , Inmunidad Innata , Memoria Inmunológica , Mediadores de Inflamación/metabolismo
16.
Biochemistry ; 59(46): 4449-4455, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33161719

RESUMEN

The physiological function of amyloid ß precursor protein (APP) in platelets has remained elusive. Upon platelet activation, APP localizes to the platelet surface and is proteolytically processed by proteases to release various metabolites, including amyloid ß (Aß) and soluble APP. Synthetic Aß is a substrate of activated coagulation factor XIII (FXIII-A*), a transglutaminase that is active both inside and on the surface of platelets. Here we tested if platelet APP and its fragments are covalently modified by FXIII-A*. Platelet-derived FXIII-A* and fibrin(ogen) bound to APP, and their bound fractions increased 7- and 11-fold upon platelet activation, respectively. The processing of platelet APP was enhanced when FXIII-A* was inhibited. Soluble APPß was covalently cross-linked by FXIII-A*. This mechanism regulating APP processing is significant, because controlling the processing of APP, such as by inhibiting specific secretases that cleave APP, is a therapeutic target for Alzheimer's disease.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Plaquetas/metabolismo , Factor XIIIa/metabolismo , Procesamiento Proteico-Postraduccional , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/genética , Animales , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Activación Plaquetaria , Trombina/química
17.
Res Pract Thromb Haemost ; 4(5): 823-828, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32685890

RESUMEN

BACKGROUND: Amyloid precursor protein (APP) is highly expressed in platelets. APP is the precursor to amyloid beta (Aß) peptides that accumulate in cerebral amyloid angiopathy and plaques in Alzheimer disease. APP and its metabolites interact with many components of the coagulation system, and have both anticoagulant and procoagulant properties, but it is unclear if APP contributes to hemostasis in vivo. OBJECTIVES: To determine whether APP contributes to hemostasis in mice, including when inhibitors of coagulation are administered. METHODS: Blood loss in APP knockout (KO) mice was measured in liver laceration and tail transection models of hemorrhage. Blood loss was also measured following tail transection in mice given an inhibitor of coagulation factor Xa (apixaban), platelet inhibitors (aspirin + clopidogrel), tissue-type plasminogen activator (t-PA), or the antifibrinolytic tranexamic acid (TXA). RESULTS AND DISCUSSION: Blood loss from liver lacerations was similar between APP KO mice and wild-type (WT) mice, but APP KO mice bled more from tail transections. When mice were challenged with aspirin + clopidogrel, the difference in bleeding between APP KO and WT mice was abrogated. In contrast, a difference in bleeding between the strains persisted when mice were treated with apixaban, t-PA, or TXA. Blood collected from APP KO mice and analyzed with thromboelastography had longer clotting times, and the clots were less stiff and more susceptible to fibrinolysis compared to blood from WT mice. CONCLUSIONS: The absence of APP measurably increases bleeding in mice, which is consistent with a role for platelet-derived APP and Aß peptides in hemostasis.

18.
Front Immunol ; 10: 2473, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31736943

RESUMEN

Calcium (Ca2+) is a vital secondary messenger in T lymphocytes regulating a vast array of important events including maturation, homeostasis, activation, and apoptosis and can enter the cell through CRAC, TRP, and CaV channels. Here we describe a mutation in the L-type Ca2+ channel CaV1.4 leading to T lymphocyte dysfunction, including several hallmarks of immunological exhaustion. CaV1.4-deficient mice exhibited an expansion of central and effector memory T lymphocytes, and an upregulation of inhibitory receptors on several T cell subsets. Moreover, the sustained elevated levels of activation markers on B lymphocytes suggest that they are in a chronic state of activation. Functionally, T lymphocytes exhibited a reduced store-operated Ca2+ flux compared to wild-type controls. Finally, modifying environmental conditions by herpes virus infection exacerbated the dysfunctional immune phenotype of the CaV1.4-deficient mice. This is the first example where the mutation of a CaV channel leads to T lymphocyte dysfunction, including the upregulation of several inhibitory receptors, hallmarks of T cell exhaustion, and establishes the physiological importance of CaV channel signaling in maintaining a nimble immune system.


Asunto(s)
Canales de Calcio Tipo L/genética , Mutación , Fenotipo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Relación CD4-CD8 , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Calcio/metabolismo , Señalización del Calcio , Expresión Génica , Estudios de Asociación Genética , Hepatitis Viral Animal/inmunología , Hepatitis Viral Animal/virología , Memoria Inmunológica , Inmunofenotipificación , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Recuento de Linfocitos , Ratones , Ratones Noqueados , Virus de la Hepatitis Murina/inmunología
19.
J Immunol ; 202(4): 1021-1030, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30718290

RESUMEN

Calcium (Ca2+) is an important second messenger in lymphocytes and is essential in regulating various intracellular pathways that control critical cell functions. Ca2+ channels are located in the plasma membrane and intracellular membranes, facilitating Ca2+ entry into the cytoplasm. Upon Ag receptor stimulation, Ca2+ can enter the lymphocyte via the Ca2+ release-activated Ca2+ channel found in the plasma membrane. The increase of cytosolic Ca2+ modulates signaling pathways, resulting in the transcription of target genes implicated in differentiation, activation, proliferation, survival, and apoptosis of lymphocytes. Along with Ca2+ release-activated Ca2+ channels, several other channels have been found in the membranes of T and B lymphocytes contributing to key cellular events. Among them are the transient receptor potential channels, the P2X receptors, voltage-dependent Ca2+ channels, and the inositol 1,4,5-trisphosphate receptor as well as the N-methyl-d-aspartate receptors. In this article, we review the contributions of these channels to mediating Ca2+ currents that drive specific lymphocyte functions.


Asunto(s)
Huesos/metabolismo , Canales de Calcio/metabolismo , Calcio/metabolismo , Linfocitos/metabolismo , Animales , Huesos/inmunología , Canales de Calcio/inmunología , Humanos , Linfocitos/inmunología , Receptores de Antígenos/inmunología
20.
J Cereb Blood Flow Metab ; 39(10): 2074-2088, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-29845881

RESUMEN

Delivery of biologic drugs across the blood-brain barrier is becoming a reality. However, the solutions often involve the assembly of complex multi-specific antibody molecules. Here we utilize a simple 12 amino-acid peptide originating from the melanotransferrin (MTf) protein that has shown improved brain delivery properties. 3D confocal fluorescence microscopic analysis demonstrated brain parenchymal localisation of a fluorescently labelled antibody (NIP228) when chemically conjugated to either the MTf peptide or full-length MTf protein. Measurement of plasma kinetics demonstrated the MTf peptide fusions had very similar kinetics to an unmodified NIP228 control antibody, whereas the fusion to MTf protein had significantly reduced plasma exposure most likely due to a higher tissue distribution in the periphery. Brain exposure for the MTf peptide fusions was significantly increased for the duration of the study, exceeding that of the fusions to full length MTf protein. Using a neuropathic pain model, we have demonstrated that fusions to interleukin-1 receptor antagonist (IL-1RA) are able to induce significant and durable analgesia following peripheral administration. These data demonstrate that recombinant and chemically conjugated MTf-based brain delivery vectors can deliver therapeutic levels of drug to the central nervous system.


Asunto(s)
Portadores de Fármacos/metabolismo , Proteína Antagonista del Receptor de Interleucina 1/uso terapéutico , Glicoproteínas de Membrana/metabolismo , Neuralgia/tratamiento farmacológico , Péptidos/metabolismo , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Portadores de Fármacos/química , Humanos , Proteína Antagonista del Receptor de Interleucina 1/administración & dosificación , Proteína Antagonista del Receptor de Interleucina 1/farmacocinética , Masculino , Glicoproteínas de Membrana/química , Ratones Endogámicos C57BL , Neuralgia/metabolismo , Péptidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA