Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomimetics (Basel) ; 8(6)2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37887602

RESUMEN

As human-robot interaction becomes more prevalent in industrial and clinical settings, detecting changes in human posture has become increasingly crucial. While recognizing human actions has been extensively studied, the transition between different postures or movements has been largely overlooked. This study explores using two deep-learning methods, the linear Feedforward Neural Network (FNN) and Long Short-Term Memory (LSTM), to detect changes in human posture among three different movements: standing, walking, and sitting. To explore the possibility of rapid posture-change detection upon human intention, the authors introduced transition stages as distinct features for the identification. During the experiment, the subject wore an inertial measurement unit (IMU) on their right leg to measure joint parameters. The measurement data were used to train the two machine learning networks, and their performances were tested. This study also examined the effect of the sampling rates on the LSTM network. The results indicate that both methods achieved high detection accuracies. Still, the LSTM model outperformed the FNN in terms of speed and accuracy, achieving 91% and 95% accuracy for data sampled at 25 Hz and 100 Hz, respectively. Additionally, the network trained for one test subject was able to detect posture changes in other subjects, demonstrating the feasibility of personalized or generalized deep learning models for detecting human intentions. The accuracies for posture transition time and identification at a sampling rate of 100 Hz were 0.17 s and 94.44%, respectively. In summary, this study achieved some good outcomes and laid a crucial foundation for the engineering application of digital twins, exoskeletons, and human intention control.

2.
Polymers (Basel) ; 14(19)2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36236146

RESUMEN

The use of additive manufactured (AM) titanium-based materials has increased substantially for medical implants and aerospace components. However, the inferior surface roughness of additive manufactured products affects the outward appearance and reduces performance. This study determines whether activation treatment prior to electropolishing produces a better surface. Oxalic acid (OA) is used as a pre-activator using different experimental conditions and the surface roughness is reduced by electropolishing with an electrolyte of perchloric acid and glacial acetic acid. The SEM surface morphology, mechanical properties, phase transformation and electrochemical properties are measured to determine the effect of different degrees of roughness on the surface. The results show that the surface roughness of AM titanium-based samples decreases from 8.47 µm to 1.09 µm after activation using OA as a pre-treatment for electropolishing. After electropolishing using optimal parameters, the hardness and resistance to corrosion resistance are increased.

3.
J Med Syst ; 42(8): 148, 2018 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-29961144

RESUMEN

With critical importance of medical healthcare, there exist urgent needs for in-depth medical studies that can access and analyze specific physiological signals to provide theoretical support for practical clinical care. As a consequence, obtaining the valuable medical data with minimal cost and impacts on hospital work comes as the first concern of researchers. Anesthesia plays a widely recognized role in surgeries, which attracts people to undertake relevant research. In this paper, a real-time physiological medical signal data acquisition system (PMSDA) for the multi-operating room applications is proposed with high universality of the hospital practical settings and research requirements. By utilizing a wireless communication approach, it provides an easily accessible network platform for collection of physiological medical signals such as photoplethysmogram (PPG), electrocardiograph (ECG) and electroencephalogram (EEG) during the surgery. In addition, the raw data is stored on a server for safe backup and further analysis of depth of anesthesia (DoA). Results show that the PMSDA exhibits robust, high quality performance and efficiently reduces costs compared to previously manual methods and allows seamless integration into hospital environment, independent of its routine work. Overall, it provides a pragmatic and flexible surgery-data acquisition system model with low impact and resource cost applicable to research in critical and practical medical circumstances.


Asunto(s)
Anestesia , Monitoreo Fisiológico/instrumentación , Quirófanos , Anestesiología , Niño , Electrocardiografía , Electroencefalografía , Humanos , Taiwán
4.
Comput Methods Programs Biomed ; 137: 77-85, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28110742

RESUMEN

BACKGROUND AND OBJECTIVE: Intraoperative awareness refers that patients can recall aspects of their surgery after being put under general anesthesia. This distressing complication causes affected patients to be conscious and probably feel pain, leading to emotional trauma or other sequelae. Monitoring and administrating the depth of anesthesia is necessary to prevent patients from awareness during a medical operation. In this paper, we analyzed the electroencephalograms (EEGs) of patients to characterize their anesthesia. The data set, "awareness" and "anesthesia" groups, each contained 558 samples, including patients who had undergone different types of surgeries. METHODS: EEG signals acquired from patients in an aware state or under anesthesia were decomposed into a set of intrinsic mode functions (IMFs) through empirical mode decomposition (EMD). Fast Fourier transform (FFT) and Hilbert transform (HT) analyses were then performed on each IMF to determine the frequency spectra. The probability distributions of expected values of frequencies were generated for the same IMF in the two groups of patients. The corresponding statistical data, including analysis of variance tests, were also calculated. A receiver operating characteristic curve was used to identify optimal frequency value to discriminate between the two states of consciousness. RESULTS: The frequencies of the IMFs for aware patients were found to be higher than those for anesthetized patients. The optimal frequency threshold by using FFT (or HT) for IMF 1 was 21.08 (or 25.00) Hz. IMF1 performed the highest with respect to the area under the curve (AUC) of 0.993 for FFT (or 0.989 for HT); hence it can be applied as a useful classifier to distinguish between fully anesthetized patients and aware patients. CONCLUSIONS: This paper proposes a method for identifying whether patients' state of consciousness during a range of surgery types is "under anesthesia" or "aware." Our method involves using EEG to characterize the depth of anesthesia through two frequency analysis techniques. On the basis of our analyses, we conclude that the performance of IMF1 is satisfactory in distinguishing between patients' states of consciousness during surgery requiring general anesthesia.


Asunto(s)
Anestesia General , Electroencefalografía , Monitoreo Fisiológico/métodos , Análisis de Varianza , Investigación Empírica , Humanos , Curva ROC
5.
Biomed Res Int ; 2015: 536863, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26568957

RESUMEN

This study evaluated the depth of anesthesia (DoA) index using artificial neural networks (ANN) which is performed as the modeling technique. Totally 63-patient data is addressed, for both modeling and testing of 17 and 46 patients, respectively. The empirical mode decomposition (EMD) is utilized to purify between the electroencephalography (EEG) signal and the noise. The filtered EEG signal is subsequently extracted to achieve a sample entropy index by every 5-second signal. Then, it is combined with other mean values of vital signs, that is, electromyography (EMG), heart rate (HR), pulse, systolic blood pressure (SBP), diastolic blood pressure (DBP), and signal quality index (SQI) to evaluate the DoA index as the input. The 5 doctor scores are averaged to obtain an output index. The mean absolute error (MAE) is utilized as the performance evaluation. 10-fold cross-validation is performed in order to generalize the model. The ANN model is compared with the bispectral index (BIS). The results show that the ANN is able to produce lower MAE than BIS. For the correlation coefficient, ANN also has higher value than BIS tested on the 46-patient testing data. Sensitivity analysis and cross-validation method are applied in advance. The results state that EMG has the most effecting parameter, significantly.


Asunto(s)
Anestésicos Generales/administración & dosificación , Estado de Conciencia/efectos de los fármacos , Monitorización Neurofisiológica Intraoperatoria/métodos , Red Nerviosa , Reconocimiento de Normas Patrones Automatizadas/métodos , Signos Vitales/efectos de los fármacos , Adulto , Estado de Conciencia/fisiología , Diagnóstico por Computador/métodos , Electrocardiografía/métodos , Electroencefalografía/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Signos Vitales/fisiología
6.
Biomed Res Int ; 2015: 343478, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25738152

RESUMEN

Electroencephalogram (EEG) signals, as it can express the human brain's activities and reflect awareness, have been widely used in many research and medical equipment to build a noninvasive monitoring index to the depth of anesthesia (DOA). Bispectral (BIS) index monitor is one of the famous and important indicators for anesthesiologists primarily using EEG signals when assessing the DOA. In this study, an attempt is made to build a new indicator using EEG signals to provide a more valuable reference to the DOA for clinical researchers. The EEG signals are collected from patients under anesthetic surgery which are filtered using multivariate empirical mode decomposition (MEMD) method and analyzed using sample entropy (SampEn) analysis. The calculated signals from SampEn are utilized to train an artificial neural network (ANN) model through using expert assessment of consciousness level (EACL) which is assessed by experienced anesthesiologists as the target to train, validate, and test the ANN. The results that are achieved using the proposed system are compared to BIS index. The proposed system results show that it is not only having similar characteristic to BIS index but also more close to experienced anesthesiologists which illustrates the consciousness level and reflects the DOA successfully.


Asunto(s)
Anestesia , Estado de Conciencia , Electroencefalografía , Redes Neurales de la Computación , Procesamiento de Señales Asistido por Computador , Adulto , Anciano , Entropía , Femenino , Humanos , Masculino , Persona de Mediana Edad
7.
Australas Phys Eng Sci Med ; 37(3): 591-605, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24981134

RESUMEN

Diagnosis of depth of anaesthesia (DoA) plays an important role in treatment and drug usage in the operating theatre and intensive care unit. With the flourishing development of analysis methods and monitoring devices for DoA, a small amount of physiological data had been stored and shared for further researches. In this paper, a critical care monitoring (CCM) system for DoA monitoring and analysis was designed and developed, which includes two main components: a physiologic information database (PID) and a DoA analysis subsystem. The PID, including biologic data and clinical information was constructed through a browser and server model so as to provide a safe and open platform for storage, sharing and further study of clinical anaesthesia information. In the analysis of DoA, according to our previous studies on approximate entropy, sample entropy (SampEn) and multi-scale entropy (MSE), the SampEn and MSE were integrated into the subsystem for indicating the state of patients underwent surgeries in real time because of their stability. Therefore, this CCM system not only supplies the original biological data and information collected from the operating room, but also shares our studies for improvement and innovation in the research of DoA.


Asunto(s)
Anestesia , Cuidados Críticos/métodos , Bases de Datos como Asunto , Entropía , Monitoreo Fisiológico/métodos , Sistemas de Computación , Electroencefalografía , Análisis de Fourier , Frecuencia Cardíaca , Humanos , Procesamiento de Señales Asistido por Computador , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...