Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 14(45): 50923-50931, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36342965

RESUMEN

Covalent organic frameworks (COFs) are an emerging class of porous organic polymers that have been utilized as scaffolds for anchoring metal active species to act as heterogeneous catalysts. Though several examples of such COFs exist, a thorough experimental and computational analysis on such catalysts is limited. In this work, a series of two-dimensional (2D) imine COFs (TTA-DFB COF (N), TTA-TBD COF (N∧O), and TTA-DFP COF(N∧N)) were synthesized by using suitable building units to obtain three different coordination sites (N, N∧O, and N∧N). These were post-modified with Pd(II) to catalyze the Suzuki-Miyaura coupling reaction. Pd@TTA-DFB COF, where Pd(II) was coordinated to N sites, showed the fastest reactivity and lower stability. Pd@TTA-DFP COF showed highest stability but slowest reactivity. Pd@TTA-TBD COF was the best among the three with both high stability and fast reactivity. By combining both experimental and computational results, we conclude that the Pd(II) to Pd(0) reduction is a key step in the difference between the catalytic reactivities of the three COFs. This study demonstrates the importance of the building block approach to design COFs for efficient heterogeneous catalysis and to understand the fate of the reaction profile.

2.
Angew Chem Int Ed Engl ; 61(47): e202204938, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36100584

RESUMEN

Covalent organic frameworks (COFs) are an emerging category of organic polymers with highly porous crystalline structures. In the last decade, reports on the use of COFs as heterogeneous photocatalysts for organic transformations have shown significant progress. Still, comprehensive reviews on the mechanisms of the photocatalytic organic transformations using COFs are lacking. This Review provides a comprehensive and systematic overview of COF-based photocatalysts for organic transformations. Firstly, we discuss the photophysical properties and the characterization methods of COF-based photocatalysts. Then, the general photocatalytic mechanism, the advantages, and the strategies to improve the photocatalytic efficiency of COF-based photocatalysts are summarized. After that, advanced examples of COF-based photocatalysts for organic transformations are analyzed with regard to the underlying mechanisms. The Review ends with a critical perspective on the challenges and prospects.

3.
ACS Appl Mater Interfaces ; 14(33): 37681-37688, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35943818

RESUMEN

Iodoarenes are important precursors for fine chemicals and pharmaceuticals. The direct iodination of arenes using molecular iodine (I2) has emerged as an attractive green synthesis method. Most of the direct iodination protocols are still homogeneous systems that require harsh conditions and use or produce toxic products. We report a new heterogeneous catalytic route for the direct aerobic iodination of arenes under mild conditions using a PMoV2 polyoxometalate (POM) embedded in the metal-organic framework (MOF) MIL-101 (PMoV2@MIL-101). The catalyst shows full yield for the conversion of mesitylene to 2-iodomesitylene at a rate that is similar to the homogeneous POM system. Moreover, the catalyst is applicable for a wide range of substrates in an oxygen atmosphere without using any co-catalysts or sacrificial agents. To the best of our knowledge, this is the first report on designing a sustainable and green MOF-based heterogeneous catalytic system for the direct iodination reaction using molecular oxygen and iodine.

4.
Molecules ; 27(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35164395

RESUMEN

Two structurally dissimilar 3d-4f cages having the formulae [(CoIII)3Gd4(µ3-OH)2(CO3) (O2CtBu)11(teaH)3]·5H2O (1) and [(CoIII)3Dy3(µ3-OH)4(O2CtBu)6(teaH)3]·(NO3)2·H2O (2) have been isolated under similar reaction conditions and stoichiometry of the reactants. The most important factor for structural diversity seems to be the incorporation of one µ3-carbonate anion in 1 and not in 2. Co atoms are in a +3 oxidation state in both complexes, as shown by the Bond Valence Sum (BVS) calculations and bond lengths, and as further supported by magnetic measurements. Co3Gd4 displays a significant magnetocaloric effect (-∆Sm = 25.67 J kg-1 K-1), and Co3Dy3 shows a single molecule magnet (SMM) behavior.

5.
J Am Chem Soc ; 143(51): 21511-21518, 2021 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-34872251

RESUMEN

The differentiation between missing linker defects and missing cluster defects in MOFs is difficult, thereby limiting the ability to correlate materials properties to a specific type of defects. Herein, we present a novel and easy synthesis strategy for the creation of solely "missing cluster defects" by preparing mixed-metal (Zn, Zr)-UiO-66 followed by a gentle acid wash to remove the Zn nodes. The resulting material has the reo UiO-66 structure, typical for well-defined missing cluster defects. The missing clusters are thoroughly characterized, including low-pressure Ar-sorption, iDPC-STEM at a low dose (1.5 pA), and XANES/EXAFS analysis. We show that the missing cluster UiO-66 has a negligible number of missing linkers. We show the performance of the missing cluster UiO-66 in CO2 sorption and heterogeneous catalysis.

6.
ACS Appl Mater Interfaces ; 13(51): 60715-60735, 2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-34874167

RESUMEN

UiO-66 is regarded as an epitome of metal-organic frameworks (MOFs) because of its stability. Defect engineering has been used as a toolbox to alter the performance of MOFs. UiO-66 is among the most widely explored MOFs because of its capability to bear a high number of defects without undergoing structural collapse. Several representative works in the field of MOF-based defect engineering are available based on UiO-66. In this review, more emphasis is given toward the construction of catalytic sites by engineering defects in UiO-66 as a representative including all the detailed synthesis procedures for inducing defects, and the characterization techniques used to analyze these defects in UiO-66 are discussed. Furthermore, a comprehensive review for the defects themselves and the support using defects in catalysis is provided to accentuate the importance of defect engineering.

7.
Dalton Trans ; 50(41): 14513-14531, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34607334

RESUMEN

Toxic, carcinogenic, and hazardous materials are omnipresent, generally obtained by anthropogenic activities, industrial activities, aerobic and anaerobic degradation of waste materials and are harmful to human health and environment. Thus, sensing, colorimetric detection, and subsequent inclusion of these chemicals are of prime importance for human health and environment. In comparison to other classes of highly porous materials, luminescent metal-organic frameworks (LMOFs) have chromophoric organic ligands, high surface area, high degree of tunability and structural diversity. They have received scientific interest as sensory materials for device fabrication to detect and sense toxic small molecules. Especially, as soft-porous materials exhibiting a degree of flexibility or dynamic behaviour, flexible LMOFs are promising for selective detection and sensing, and for encapsulation of toxic and health hazardous molecules. Such flexible LMOFs offer a potential platform for selective adsorption/separation, molecular recognition, and sensing application. In this perspective, we highlight the advantages of flexibility of LMOFs for selective detection and sensing, and inclusion of toxic small molecules (solvents, anions, halobenzenes, aromatics, aromatic amines, nitro-explosives and acetylacetone). In addition, the principles and strategies guiding the design of these MOF based materials and recent progress in the luminescent detection of toxic small molecules are also discussed. In this perspective we limit our discussion on the 'non-lanthanide' based luminescent MOFs that have flexibility in the framework and show small molecule sensing applications.


Asunto(s)
Estructuras Metalorgánicas
8.
ACS Appl Mater Interfaces ; 13(39): 47010-47018, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34570479

RESUMEN

Lanthanide-based luminescent nanoparticles that are thermally responsive can be used to probe temperature changes at a nanoscale regime. However, materials that can work as both a nanothermometer and a catalyst are limited. Herein, we show that covalent organic frameworks (COFs), which is an emerging class of porous crystalline materials, can be grown around lanthanide nanoparticles to create unique core-shell nanostructures. In this way, the COF (shell) supports copper metal ions as catalytic sites and simultaneously lanthanide nanoparticles (ß-NaLuF4:Gd,Er,Yb-core) locally measure the temperature during the catalytic reaction. Moreover, ß-NaLuF4:Gd,Er,Yb nanoparticles are upconverting materials and hence can be excited at longer wavelengths (975 nm), which do not affect the catalysis substrates or the COF. As a proof-of-principle, a three-component addition reaction of benzaldehyde, indole, and malononitrile was studied. The local temperature was probed using luminescence nanothermometry during the catalytic reaction.

9.
Molecules ; 26(12)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208570

RESUMEN

C2/C1 hydrocarbon separation is an important industrial process that relies on energy-intensive cryogenic distillation methods. The use of porous adsorbents to selectively separate these gases is a viable alternative. Highly stable covalent triazine frameworks (urea-CTFs) have been synthesized using 1,3-bis(4-cyanophenyl)urea. Urea-CTFs exhibited gas uptakes of C2H2 (3.86 mmol/g) and C2H4 (2.92 mmol/g) at 273 K and 1 bar and is selective over CH4. Breakthrough simulations show the potential of urea-CTFs for C2/C1 separation.

10.
ACS Appl Mater Interfaces ; 13(8): 10249-10256, 2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33617215

RESUMEN

The prospect of introducing tunable electric conductivity in metal-organic coordination polymers is of high interest for nanoelectronic applications. As the electronic properties of these materials are strongly dependent on their microstructure, the assembly of coordination polymers into thin films with well-controlled growth direction and thickness is crucial for practical devices. Here, we report the deposition of one-dimensional (1D) coordination polymer thin films of N,N'-dimethyl dithiooxamidato-copper by atomic/molecular layer deposition. High out-of-plane ordering is observed in the resulting thin films suggesting the formation of a well-ordered secondary structure by the parallel alignment of the 1D polymer chains. We show that the electrical conductivity of the thin films is highly dependent on their oxidation state. The as-deposited films are nearly insulating with an electrical conductivity below 10-10 S cm-1 with semiconductor-like temperature dependency. Partial reduction with H2 at elevated temperature leads to an increase in the electrical conductivity by 8 orders of magnitude. In the high-conductance state, metallic behavior is observed over the temperature range of 2-300 K. Density functional theory calculations indicate that the metallic behavior originates from the formation of a half-filled energy band intersecting the Fermi level with the conduction pathway formed by the Cu-S-Cu interaction between neighboring polymer chains.

11.
Angew Chem Int Ed Engl ; 60(7): 3727-3736, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33170988

RESUMEN

Covalent Organic Frameworks (COFs), an emerging class of crystalline porous materials, are a new type of support for grafting lanthanide ions (Ln3+ ), which can be employed as ratiometric luminescent thermometers. In this work we have shown that COFs co-grafted with lanthanide ions (Eu3+ , Tb3+ ) and Cu2+ (or potentially other d-metals) can synchronously be employed both as a nanothermometer and catalyst during a chemical reaction. The performance of the thermometer could be tuned by changing the grafted d-metal and solvent environment. As a proof of principle, the Glaser coupling reaction was investigated. We show that temperature can be precisely measured during the course of the catalytic reaction using luminescence thermometry. This concept could be potentially easily extended to other catalytic reactions by grafting other d-metal ions on the Ln@COF platform.

12.
Nanomaterials (Basel) ; 11(1)2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-33379340

RESUMEN

The development of synthetic lanthanide luminescent probes for selective sensing or binding anions in aqueous medium requires an understanding of how these anions interact with synthetic lanthanide probes. Synthetic lanthanide probes designed to differentiate anions in aqueous medium could underpin exciting new sensing tools for biomedical research and drug discovery. In this direction, we present three mononuclear lanthanide-based complexes, EuLCl3 (1), SmLCl3 (2), and TbLCl3 (3), incorporating a hexadentate aminomethylpiperidine-based nitrogen-rich heterocyclic ligand L for sensing anion and establishing mechanistic insight on their binding activities in aqueous medium. All these complexes are meticulously studied for their preferential selectivities towards different anions such as HPO42-, SO42-, CH3COO-, I-, Br-, Cl-, F-, NO3-, CO32-/HCO3-, and HSO4- at pH 7.4 in aqueous HEPES (2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid) buffer. Among the anions scanned, HPO42- showed an excellent luminescence change with all three complexes. Job's plot and ESI-MS support the 1:2 association between the receptors and HPO42-. Systematic spectrophotometric titrations of 1-3 against HPO42- demonstrates that the emission intensities of 1 and 2 were enhanced slightly upon the addition of HPO42- in the range 0.01-1 equiv and 0.01-2 equiv., respectively. Among the three complexes, complex 3 showed a steady quenching of luminescence throughout the titration of hydrogen phosphate. The lower and higher detection limits of HPO42- by complexes 1 and 2 were determined as 0.1-4 mM and 0.4-3.2 mM, respectively, while complex 3 covered 0.2-100 µM. This concludes that all complexes demonstrated a high degree of sensitivity and selectivity towards HPO42-.

13.
ACS Appl Mater Interfaces ; 12(40): 44689-44699, 2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-32897044

RESUMEN

Defective nitrogen-doped carbon materials have shown a promising application as metal-free electrocatalysts in the oxygen reduction reaction (ORR) and the hydrogen evolution reaction (HER). However, there are still some challenges in the tuning of metal-free electrocatalysts and in understanding the roles of various nitrogen species in their electrocatalytic performance. Herein, we design a covalent triazine framework (CTF)-based material as an effective metal-free bifunctional electrocatalyst. We chose BINOL-CN (2,2'-dihydroxy-[1,1'-binaphthalene]-6,6'-dicarbonitrile) as both a carbon and a nitrogen source for the fabrication of N-containing CTF-based materials. Four BINOL-CTFs with varying N-functionalities (pyridinic-N/triazine-N, pyrrolic-N, quaternary-N, and pyridine-N-oxide) were successfully obtained. These materials were evaluated in the ORR and the HER in basic and acidic conditions, respectively. The best material has an onset potential of 0.793 V and a half-wave potential of 0.737 V, and it follows first-order kinetics in a 4e- pathway in the ORR reaction. The same material shows an impressive HER activity with an overpotential of 0.31 V to achieve 10 mA/cm2 and a small Tafel slope of 41 mV/dec, which is comparable to 31 mV/dec for Pt/C, making it a potential bifunctional electrocatalyst. We showed that the ORR and HER reactivity of CTF-based materials depends exclusively on the amount of quaternary-N species and on the available surface area and pore volume. This work highlights the engineering of CTF materials with varying amounts of N species as high-performance bifunctional electrocatalysts.

14.
J Am Chem Soc ; 142(6): 3174-3183, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31971786

RESUMEN

The stability of metal-organic frameworks (MOFs) typically decreases with an increasing number of defects, limiting the number of defects that can be created and limiting catalytic and other applications. Herein, we use a hemilabile (Hl) linker to create up to a maximum of six defects per cluster in UiO-66. We synthesized hemilabile UiO-66 (Hl-UiO-66) using benzene dicarboxylate (BDC) as linker and 4-sulfonatobenzoate (PSBA) as the hemilabile linker. The PSBA acts not only as a modulator to create defects but also as a coligand that enhances the stability of the resulting defective framework. Furthermore, upon a postsynthetic treatment in H2SO4, the average number of defects increases to the optimum of six missing BDC linkers per cluster (three per formula unit), leaving the Zr-nodes on average sixfold coordinated. Remarkably, the thermal stability of the materials further increases upon this treatment. Periodic density functional theory calculations confirm that the hemilabile ligands strengthen this highly defective structure by several stabilizing interactions. Finally, the catalytic activity of the obtained materials is evaluated in the acid-catalyzed isomerization of α-pinene oxide. This reaction is particularly sensitive to the Brønsted or Lewis acid sites in the catalyst. In comparison to the pristine UiO-66, which mainly possesses Brønsted acid sites, the Hl-UiO-66 and the postsynthetically treated Hl-UiO-66 structures exhibited a higher Lewis acidity and an enhanced activity and selectivity. This is further explored by CD3CN spectroscopic sorption experiments. We have shown that by tuning the number of defects in UiO-66 using PSBA as the hemilabile linker, one can achieve highly defective and stable MOFs and easily control the Brønsted to Lewis acid ratio in the materials and thus their catalytic activity and selectivity.

15.
Chemistry ; 26(7): 1441, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-31856346

RESUMEN

Invited for the cover of this issue is the group of Pascal Van Der Voort at the University of Ghent and colleagues at Technische Universität Berlin. The image depicts the covalent triazine frameworks reported in the manuscript for the sorption of CO2 and also in metal-free catalysis. Read the full text of the article at 10.1002/chem.201903926.

16.
Chemistry ; 26(7): 1548-1557, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-31603596

RESUMEN

Covalent triazine frameworks (CTFs) have provided a unique platform in functional material design for a wide range of applications. This work reports a series of new CTFs with two new heteroaromatic building blocks (pyrazole and isoxazole groups) through a building-block transformation approach aiming for carbon capture and storage (CCS) and metal-free catalysis. The CTFs were synthesized from their respective building blocks [(4,4'-(1H-pyrazole-3,5-diyl)dibenzonitrile (pyz) and 4,4'-(isoxazole-3,5-diyl)dibenzonitrile (isox))] under ionothermal conditions using ZnCl2 . Both of the building blocks were designed by an organic transformation of an acetylacetone containing dinitrile linker to pyrazole and isoxazole groups, respectively. Due to this organic transformation, (i) linker aromatization, (ii) higher surface areas and nitrogen contents, (iii) higher aromaticity, and (iv) higher surface basicity was achieved. Due to these enhanced properties, CTFs were explored for CO2 uptake and metal-free heterogeneous catalysis. Among all, the isox-CTF, synthesized at 400 °C, showed the highest CO2 uptake (4.92 mmol g-1 at 273 K and 2.98 mmol g-1 at 298 K at 1 bar). Remarkably, these CTFs showed excellent metal-free catalytic activity for the aerobic oxidation of benzylamine at mild reaction conditions. On studying the properties of the CTFs, it was observed that organic transformations and ligand aromatization of the materials are crucial factor to tune the important parameters that influence the CO2 uptake and the catalytic activity. Overall, this work highlights the substantial effect of designing new CTF materials by building-block organic transformations resulting in better properties for CCS applications and heterogeneous catalysis.

17.
ACS Appl Mater Interfaces ; 11(30): 27343-27352, 2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31276372

RESUMEN

Recently, covalent organic frameworks (COFs) have emerged as an interesting class of porous materials, featuring tunable porosity and fluorescence properties based on reticular construction principles. Some COFs display highly emissive monocolored luminescence, but attaining white-light emission from COFs is difficult as it must account for a wide wavelength range. White-light emission is highly desired for solid-state lighting applications, and obtaining it usually demands the combination of red-, green-, and blue-light components. Hence, to achieve the targeted white-light emission, we report for the first time grafting of lanthanides (Eu3+/Tb3+) on a two-dimensional imine COF (TTA-DFP-COF). We studied the luminescence properties of the hybrid materials prepared by anchoring Eu3+ (red light) and Tb3+ (green light) ß-diketonate complexes onto the TTA-DFP-COF. Reticular construction is exploited to design strong coordination of Eu3+ and Tb3+ ions into nitrogen-rich pockets of the imine COF. Mixed Eu3+/Tb3+ materials are then prepared to incorporate red and green components along with the inherent blue light from the organic moieties of the COF to produce white-light emission. We show that COFs have the potential for hosting Eu3+ and Tb3+ complexes, which can be tuned to obtain desired excitations for applications in the field of optoelectronics, microscopy, optical sensing, and bioassay.

18.
Inorg Chem ; 55(11): 5237-44, 2016 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-27196362

RESUMEN

A rare class of four tetranuclear lanthanide based quadruple stranded helicates namely, [Ln4L4(OH)2](OAc)2·xH2O (Ln = Gd(III)(1), Dy(III)(2) and x = 4, 5 respectively), [Er4L4(OH)2](NO3)2·9H2O (3), and [Dy4L4(NO3)](NO3)2·2CH3OH·H2O (4) were synthesized by employing succinohydrazone derived bis-tridentate ligand (H2L) and characterized. Structures of 1-3 are similar to each other except the nature of counterions and number of lattice water molecules. In 4, a distorted nitrate ion was arranged in a hexagonal manner holding four dysprosium centers in a slightly twisted manner. Because of the symmetrical nature of each complex, the C4 axis crosses the center of helicate resulting a pseudo-D4 coordination environment. Each ligand coordinates to lanthanide centers in helical manner forming mixture of left (Λ) and right (Δ) handed discrete units. Complex 1 exhibits antiferromagnetic exchange interaction between nearby Gd(III) centers and shows magnetic refrigeration (-ΔSm = 24.4 J kg(-1) K(-1) for ΔH = 7 T at 3 K). AC magnetic susceptibility measurements of 2 and 4 demonstrate slow relaxation behavior, with Ueff (effective energy barrier) of 20.5 and 4.6 K, respectively. As per our knowledge, complexes 1, 2, and 4 represent the first examples of aesthetically pleasing quadruple stranded helicates showing potential magnetocaloric effect and single-molecule-magnet-like behavior.

19.
Acc Chem Res ; 49(6): 1093-103, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27153223

RESUMEN

Transition metal based high nuclearity molecular magnetic cages are a very important class of compounds owing to their potential applications in fabricating new generation molecular magnets such as single molecular magnets, magnetic refrigerants, etc. Most of the reported polynuclear cages contain carboxylates or alkoxides as ligands. However, the binding ability of phosphonates with transition metal ions is stronger than the carboxylates or alkoxides. The presence of three oxygen donor sites enables phosphonates to bridge up to nine metal centers simultaneously. But very few phosphonate based transition metal cages were reported in the literature until recently, mainly because of synthetic difficulties, propensity to result in layered compounds, and also their poor crystalline properties. Accordingly, various synthetic strategies have been followed by several groups in order to overcome such synthetic difficulties. These strategies mainly include use of small preformed metal precursors, proper choice of coligands along with the phosphonate ligands, and use of sterically hindered bulky phosphonate ligands. Currently, the phosphonate system offers a library of high nuclearity transition metal and mixed metal (3d-4f) cages with aesthetically pleasing structures and interesting magnetic properties. This Account is in the form of a research landscape on our efforts to synthesize and characterize new types of phosphonate based high nuclearity paramagnetic transition metal cages. We quite often experienced synthetic difficulties with such versatile systems in assembling high nuclearity metal cages. Few methods have been emphasized for the self-assembly of phosphonate systems with suitable transition metal ions in achieving high nuclearity. We highlighted our journey from 2005 until today for phosphonate based high nuclearity transition metal cages with V(IV/V), Mn(II/III), Fe(III), Co(II), Ni(II), and Cu(II) metal ions and their magnetic properties. We observed that slight changes in stoichiometry, reaction conditions, and presence or absence of coligand played crucial roles in determining the final structure of these complexes. Most of the complexes included are regular in geometry with a dense arrangement of the above-mentioned metal centers in a confined space, and a few of them also resemble regular polygonal solids (Archimedean and Platonic). Since there needs to be a historical approach for a comparative study, significant research output reported by other groups is also compared in brief to ensure the potential of phosphonate ligands in synthesizing high nuclearity magnetic cages.

20.
Angew Chem Int Ed Engl ; 55(29): 8299-303, 2016 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-27088539

RESUMEN

Efficient rhodium(III) catalysts were developed for asymmetric hydrogenation of simple olefins. A new series of chloride-bridged dinuclear rhodium(III) complexes 1 were synthesized from the rhodium(I) precursor [RhCl(cod)]2 , chiral diphosphine ligands, and hydrochloric acid. Complexes from the series acted as efficient catalysts for asymmetric hydrogenation of (E)-prop-1-ene-1,2-diyldibenzene and its derivatives without any directing groups, in sharp contrast to widely used rhodium(I) catalytic systems that require a directing group for high enantioselectivity. The catalytic system was applied to asymmetric hydrogenation of allylic alcohols, alkenylboranes, and unsaturated cyclic sulfones. Control experiments support the superiority of dinuclear rhodium(III) complexes 1 over typical rhodium(I) catalytic systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...