Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38215030

RESUMEN

Traditional epidermal electrodes, typically made of silver/silver chloride (Ag/AgCl), have been widely used in various applications, including electrophysiological recordings and biosignal monitoring. However, they present limitations due to inherent material mismatches with the skin. This often results in high interface impedance, discomfort, and potential skin irritation, particularly during prolonged use or for individuals with sensitive skin. While various tissue-mimicking materials have been explored, their mechanical advantages often come at the expense of conductivity, resulting in low-quality recordings. We herein report the facile fabrication of conducting and stretchable hydrogels using a "one-pot" method. This approach involves the synthesis of a natural hydrogel, termed Golde, composed of abundant and eco-friendly components, including gelatin, chitosan, and glycerol. To enhance the conductivity of the hydrogel, various conducting materials, such as poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS), thermally reduced graphene (TRG), and MXene, are introduced. The resulting conducting hydrogels exhibit remarkable robustness, do not require crosslinkers, and possess a unique thermo-reversible property, simplifying the fabrication process and ensuring enhanced long-term stability. Moreover, their fabrication is sustainable, as it employs environmentally friendly materials and processes while retaining their skin-friendly characteristics. The resulting hydrogel electrodes were tested for electrocardiogram (ECG) signal acquisition and outperformed commercial electrodes even when implemented in an all-flexible electrode setup simply using copper tape, owing to their inherent adhesiveness.

2.
Sci Rep ; 10(1): 14924, 2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32913231

RESUMEN

In this work, we demostrate the preparation of low cost High Refractive Index polystyrene-sulfur nanocomposites in one step by combining inverse vulcanization and melt extrusion method. Poly(sulfur-1,3-diisopropenylbenzene) (PS-SD) copolymer nanoparticles (5 to 10 wt%) were generated in the polystyrene matrix via in situ inverse vulcanization reaction during extrusion process. Formation of SD copolymer was confirmed by FTIR and Raman spectroscopy. SEM and TEM further confirms the presence of homogeneously dispersed SD nanoparticles in the size range of 5 nm. Thermal and mechanical properties of these nanocomposites are comparable with the pristine polystyrene. The transparent nanocomposites exhibits High Refractive Index n = 1.673 at 402.9 nm and Abbe'y number ~ 30 at 10 wt% of sulfur loading. The nanocomposites can be easily processed into mold, films and thin films by melt processing as well as solution casting techniques. Moreover, this one step preparation method is scalable and can be extend to the other polymers.

3.
ACS Omega ; 5(20): 11394-11401, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32478228

RESUMEN

Herein, we report the use of bulk molybdenum disulfide (MoS2) as the reinforcing agent to enhance the toughness of isotactic polypropylene (iPP). The iPP-MoS2 nanocomposites with varying amounts of MoS2 (0.1 to 5 wt %) were prepared by a one-step melt extrusion method, and the effects of MoS2 on the morphology, thermal, and mechanical properties were evaluated by different instrumental techniques such as Raman, ATR-FTIR, UTM, TEM, TGA, and DSC. TEM images showed the uniform dispersion of multilayer MoS2 in the polymer matrix, and XRD results suggested the formation of the ß phase when a low amount of MoS2 is loaded in the composites. Mechanical tests revealed a significant increase in the toughness and elongation at break (300-400%) in the composites containing low amounts of MoS2 (0.25 to 0.5 wt %). Enhanced toughness and elongation in iPP could be related to the combined effect of the ß phase and the exfoliation of bulk MoS2 under applied stress. The thermal stability of the composites was also improved with the increase in MoS2 loading. Direct utilization of bulk MoS2 and one-step melt extrusion process could be a cost-effective method to induce high elasticity and toughness in iPP.

4.
ACS Appl Mater Interfaces ; 11(33): 30247-30258, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31330096

RESUMEN

In this present work, TiO2-SiO2-sulfur (Ti-Si-S) nanohybrid material was successfully prepared using TiO2 nano powder, TEOS sol-gel precursor, and elemental sulfur as raw material by sol-gel process and hydrothermal method at 120 °C temperature. Raman spectroscopy, XRD, SEM, TEM, and N2 absorption-desorption characterized the synthesized nanohybrid material. The characterization results confirmed the homogeneous distribution of sulfur in the nanohybrid material. The size of the Ti-Si-S nanohybrid material is vary between 20 and 40 nm and the surface areas of the nanohybrid material was measured using N2 absorption-desorption, which showed value of 57.2 m2 g-1. The potential of Ti-Si-S nanohybrid material as an adsorbent was further tested to adsorb methylene blue (MB) from aqueous solution. Adsorption performance of hybrid material was highly influenced by the solution pH and mass of adsorbent. The adsorption of MB using Ti-Si-S nanohybrid material was homogeneous monolayer adsorption, which followed the Langmuir adsorption isotherm with a qe,max value of 804.80 mg g-1 and pseudo-second-order rate equation. The dye diffusion mechanism partially followed both intraparticle and liquid film diffusion mechanisms. Thermodynamics studies predicted the spontaneous and endothermic nature of the whole adsorption process. The Ti-Si-S nanohybrid material was used for six repeated cycles of MB dye adsorption-desorption.

5.
RSC Adv ; 9(8): 4397-4403, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-35520171

RESUMEN

Sulfur-containing polymers prepared via the inverse vulcanization technique have attracted considerable attention due to the feasibility of the method to produce stable polysulfides with up to 50-90 wt% of sulfur and their wide range of applications from Li-S batteries to catalysis, self-healing and optical materials. Despite many applications, the development of new advanced materials using sulfur is still in the initial stage. Herein, we reported the preparation and processing of a porous sulfur foam for low thermal conductivity applications by combining inverse vulcanization and template removal techniques. Initially, water-soluble template-embedded cross-linked polysulfides were prepared and hot-pressed to the required shape and size. Later, pores were generated by dissolving the template in water. The porosity of the foam was altered by varying the particle size of template materials. The effects of the templates on the porosity and morphology were discussed and correlated with thermal conductivity. The sulfur foam with a smaller pore size and high porosity showed significant decrease in the thermal conductivity up to ∼0.032 W m-1 K-1 at 25 °C, which was much lower than that of pristine sulfur (0.205 W m-1 K-1). The present method offers flexibility to modify the foam structure and properties during preparation and processing.

6.
Sci Rep ; 8(1): 11912, 2018 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-30093654

RESUMEN

Understanding the molecular interaction and morphology of organic-inorganic hybrid materials is an important and fundamental assignment to develop novel high-performance materials. In this work, we developed two types of hybrid coating materials by using different silane coupling agents via Michael addition reaction and ring-opening polymerization. The changes in molecular interaction and morphology of the hybrid coatings due to chemical composition and curing temperature were studied by electron microscopy, spectroscopy and solid state 29Si nuclear magnetic resonance analysis. Fundamental differences were observed in HYBRID I and HYBRID II coatings during the nucleation stage that was dependent on the curing temperature. Higher curing temperature of the hybrid coatings resulted in improved uniformity and greater crystallinity of dispersed phases, and better control of the morphology compared with coatings cured at lower temperatures. The higher curing temperature provided more consistent nucleation sites for the growth of larger nanostructures of desired characteristics (e.g., size and surface features). There is great flexibility in synthesizingg these hybrid materials where different structure and morphology can be achieved to produce materials whose applications can range from adhesives to protective coatings. Refractive index results revealed that HYBRID I (90 °C) coating showed higher refractive index than HYBRID II (90 °C) coating.

7.
ACS Omega ; 3(3): 3330-3339, 2018 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-31458588

RESUMEN

Sulfur copolymers with high sulfur content find a broad range of applications from Li-S batteries to catalytic processes, self-healing materials, and the synthesis of nanoparticles. Synthesis of sulfur-containing polymers via the inverse vulcanization technique gained a lot of attention due to the feasibility of the reaction to produce copolymers with high sulfur content (up to 90 wt %). However, the interplay between the cross-linker and the structure of the copolymers has not yet been fully explored. In the present work, the effect of the amount of 1,3-diisopropenyl benzene (DIB) cross-linker on the structural stability of the copolymer was thoroughly investigated. Combining X-ray diffraction and differential scanning calorimetry, we demonstrated the partial depolymerization of sulfur in the copolymer containing low amount of cross-linker (<30 wt % DIB). On the other hand, by applying NMR and electron paramagnetic resonance techniques, we have shown that increasing the cross-linker content above 50 wt % leads to the formation of radicals, which may severely degrade the structural stability of the copolymer. Thus, an optimum amount of cross-linker is essential to obtain a stable copolymer. Moreover, we were able to detect the release of H2S gas during the cross-linking reaction as predicted based on the abstraction of hydrogen by the sulfur radicals and therefore we emphasize the need to take appropriate precautions while implementing the inverse vulcanization reaction.

8.
J Phys Chem B ; 111(30): 8801-11, 2007 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-17590037

RESUMEN

New types of hyperbranched polyesters were synthesized by the reaction of 2,2-bis(hydroxymethyl) propionic acid as an AB2-type monomer with pentaerythritol, trimethylol propane, or glycerol as the core moiety. The obtained globular networks were characterized by NMR and MALDI-TOF spectroscopic techniques. Molecular weights determined by MALDI-TOF were confirmed by gel permeation chromatography. Fourier transform infrared (FTIR) spectroscopy was used for the quantitative evaluation of hydrogen bonding as well as to study the structure-property relationship. To investigate the changes and types of intermolecular H-bonding interactions in hyperbranched polyesters with a variation in molecular structure, the deconvolution of FTIR spectra was carried out using Origin 6.0 software through the Gaussian curve-fitting method. Molecular simulations were performed through molecular mechanics and molecular dynamics (MD) calculations using the DISCOVER module. Cohesive energy density, solubility parameters, and surface properties of the hyperbranched polyesters were calculated. Further, vibrational analysis was computed using MD simulations for all the hyperbranched polyesters developed in this work.


Asunto(s)
Simulación por Computador , Modelos Químicos , Poliésteres/química , Poliésteres/síntesis química , Espectroscopía de Resonancia Magnética , Estructura Molecular , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...