Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Nat Commun ; 14(1): 6264, 2023 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-37805497

RESUMEN

The human brain extracts meaning using an extensive neural system for semantic knowledge. Whether broadly distributed systems depend on or can compensate after losing a highly interconnected hub is controversial. We report intracranial recordings from two patients during a speech prediction task, obtained minutes before and after neurosurgical treatment requiring disconnection of the left anterior temporal lobe (ATL), a candidate semantic knowledge hub. Informed by modern diaschisis and predictive coding frameworks, we tested hypotheses ranging from solely neural network disruption to complete compensation by the indirectly affected language-related and speech-processing sites. Immediately after ATL disconnection, we observed neurophysiological alterations in the recorded frontal and auditory sites, providing direct evidence for the importance of the ATL as a semantic hub. We also obtained evidence for rapid, albeit incomplete, attempts at neural network compensation, with neural impact largely in the forms stipulated by the predictive coding framework, in specificity, and the modern diaschisis framework, more generally. The overall results validate these frameworks and reveal an immediate impact and capability of the human brain to adjust after losing a brain hub.


Asunto(s)
Diásquisis , Semántica , Humanos , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética , Lóbulo Temporal/cirugía , Lóbulo Temporal/fisiología
3.
Cereb Cortex ; 33(12): 7857-7869, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-36935095

RESUMEN

Goal-directed behavior is dependent on neuronal activity in the prefrontal cortex (PFC) and extended frontostriatal circuitry. Stress and stress-related disorders are associated with impaired frontostriatal-dependent cognition. Our understanding of the neural mechanisms that underlie stress-related cognitive impairment is limited, with the majority of prior research focused on the PFC. To date, the actions of stress across cognition-related frontostriatal circuitry are unknown. To address this gap, the current studies examined the effects of acute noise-stress on the spiking activity of neurons and local field potential oscillatory activity within the dorsomedial PFC (dmPFC) and dorsomedial striatum (dmSTR) in rats engaged in a test of spatial working memory. Stress robustly suppressed responses of both dmPFC and dmSTR neurons strongly tuned to key task events (delay, reward). Additionally, stress strongly suppressed delay-related, but not reward-related, theta and alpha spectral power within, and synchrony between, the dmPFC and dmSTR. These observations provide the first demonstration that stress disrupts the neural coding and functional connectivity of key task events, particularly delay, within cognition-supporting dorsomedial frontostriatal circuitry. These results suggest that stress-related degradation of neural coding within both the PFC and striatum likely contributes to the cognition-impairing effects of stress.


Asunto(s)
Cuerpo Estriado , Memoria a Corto Plazo , Ratas , Animales , Memoria a Corto Plazo/fisiología , Cuerpo Estriado/fisiología , Neostriado , Corteza Prefrontal/fisiología , Neuronas/fisiología
5.
Nat Commun ; 13(1): 4909, 2022 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-35987994

RESUMEN

The primate amygdala is a complex consisting of over a dozen nuclei that have been implicated in a host of cognitive functions, individual differences, and psychiatric illnesses. These functions are implemented through distinct connectivity profiles, which have been documented in animals but remain largely unknown in humans. Here we present results from 25 neurosurgical patients who had concurrent electrical stimulation of the amygdala with intracranial electroencephalography (electrical stimulation tract-tracing; es-TT), or fMRI (electrical stimulation fMRI; es-fMRI), methods providing strong inferences about effective connectivity of amygdala subdivisions with the rest of the brain. We quantified functional connectivity with medial and lateral amygdala, the temporal order of these connections on the timescale of milliseconds, and also detail second-order effective connectivity among the key nodes. These findings provide a uniquely detailed characterization of human amygdala functional connectivity that will inform functional neuroimaging studies in healthy and clinical populations.


Asunto(s)
Amígdala del Cerebelo , Mapeo Encefálico , Amígdala del Cerebelo/fisiología , Animales , Encéfalo , Mapeo Encefálico/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Vías Nerviosas/fisiología
6.
Neuron ; 109(5): 852-868.e8, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33482086

RESUMEN

Human brain pathways supporting language and declarative memory are thought to have differentiated substantially during evolution. However, cross-species comparisons are missing on site-specific effective connectivity between regions important for cognition. We harnessed functional imaging to visualize the effects of direct electrical brain stimulation in macaque monkeys and human neurosurgery patients. We discovered comparable effective connectivity between caudal auditory cortex and both ventro-lateral prefrontal cortex (VLPFC, including area 44) and parahippocampal cortex in both species. Human-specific differences were clearest in the form of stronger hemispheric lateralization effects. In humans, electrical tractography revealed remarkably rapid evoked potentials in VLPFC following auditory cortex stimulation and speech sounds drove VLPFC, consistent with prior evidence in monkeys of direct auditory cortex projections to homologous vocalization-responsive regions. The results identify a common effective connectivity signature in human and nonhuman primates, which from auditory cortex appears equally direct to VLPFC and indirect to the hippocampus. VIDEO ABSTRACT.


Asunto(s)
Lóbulo Frontal/fisiología , Lóbulo Temporal/fisiología , Adolescente , Adulto , Animales , Corteza Auditiva/fisiología , Mapeo Encefálico , Estimulación Eléctrica , Femenino , Humanos , Macaca mulatta , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/fisiología , Giro Parahipocampal/fisiología , Corteza Prefrontal/fisiología , Especificidad de la Especie , Adulto Joven
7.
Psychopharmacology (Berl) ; 237(5): 1533-1543, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32067136

RESUMEN

RATIONALE: Low doses of psychostimulants such as methylphenidate (MPH), which increase extracellular dopamine and norepinephrine by inhibiting their reuptake, are the most commonly used treatment for attention deficit hyperactivity disorder (ADHD). Therapeutic doses of these drugs may improve focused attention at the expense of hindering other cognitive functions, including the ability to adapt behavior in response to changing circumstances-cognitive flexibility. Cognitive flexibility is thought to depend on proper operation of the prefrontal cortex (PFC) and is also linked to reward processing, which is dopamine-dependent. Additionally, reward outcome signals have been recorded from the PFC. OBJECTIVES: This study tested the hypothesis that therapeutic doses of MPH impair cognitive flexibility and that this impairment in performance resulted from interference in reward signals within the PFC. METHODS: Four rhesus monkeys were given therapeutically relevant doses of oral MPH (0, 3, and 6 mg/kg) while performing an oculomotor switching task to evaluate its effect on task performance. Single-unit recordings in the PFC of two monkeys were taken before and after MPH administration during task performance. RESULTS: The results show that MPH does hinder switching task performance, an effect that was correlated with a reduction in the amplitude of outcome signals found in the discharges of some neurons in the PFC. CONCLUSIONS: Methylphenidate impaired task-switching performance, which can be used as a measure of cognitive flexibility. This detriment may result from degraded outcome signaling within the PFC. This study has implications for the use of MPH in the treatment of ADHD.


Asunto(s)
Inhibidores de Captación de Dopamina/farmacología , Metilfenidato/farmacología , Corteza Prefrontal/efectos de los fármacos , Desempeño Psicomotor/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Atención/efectos de los fármacos , Atención/fisiología , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Trastorno por Déficit de Atención con Hiperactividad/psicología , Estimulantes del Sistema Nervioso Central/farmacología , Estimulantes del Sistema Nervioso Central/toxicidad , Cognición/efectos de los fármacos , Cognición/fisiología , Inhibidores de Captación de Dopamina/toxicidad , Relación Dosis-Respuesta a Droga , Macaca mulatta , Masculino , Metilfenidato/toxicidad , Corteza Prefrontal/fisiología , Desempeño Psicomotor/fisiología , Transducción de Señal/fisiología
8.
J Neurosci ; 39(8): 1436-1444, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30530859

RESUMEN

Dopamine (DA) levels in the striatum are increased by many therapeutic drugs, such as methylphenidate (MPH), which also alters behavioral and cognitive functions thought to be controlled by the PFC dose-dependently. We linked DA changes and functional connectivity (FC) using simultaneous [18F]fallypride PET and resting-state fMRI in awake male rhesus monkeys after oral administration of various doses of MPH. We found a negative correlation between [18F]fallypride nondisplaceable binding potential (BPND) and MPH dose in the head of the caudate (hCd), demonstrating increased extracellular DA resulting from MPH administration. The decreased BPND was negatively correlated with FC between the hCd and the PFC. Subsequent voxelwise analyses revealed negative correlations with FC between the hCd and the dorsolateral PFC, hippocampus, and precuneus. These results, showing that MPH-induced changes in DA levels in the hCd predict resting-state FC, shed light on a mechanism by which changes in striatal DA could influence function in the PFC.SIGNIFICANCE STATEMENT Dopamine transmission is thought to play an essential role in shaping large scale-neural networks that underlie cognitive functions. It is the target of therapeutic drugs, such as methylphenidate (Ritalin), which blocks the dopamine transporter, thereby increasing extracellular dopamine levels. Methylphenidate is used extensively to treat attention deficit hyperactivity disorder, even though its effects on cognitive functions and their underlying neural mechanisms are not well understood. To date, little is known about the link between changes in dopamine levels and changes in functional brain organization. Using simultaneous PET/MR imaging, we show that methylphenidate-induced changes in endogenous dopamine levels in the head of the caudate predict changes in resting-state functional connectivity between this structure and the prefrontal cortex, precuneus, and hippocampus.


Asunto(s)
Núcleo Caudado/fisiología , Conectoma , Inhibidores de Captación de Dopamina/farmacología , Corteza Prefrontal/fisiología , Animales , Benzamidas , Mapeo Encefálico , Núcleo Caudado/diagnóstico por imagen , Dopamina/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Relación Dosis-Respuesta a Droga , Radioisótopos de Flúor , Macaca mulatta , Imagen por Resonancia Magnética , Masculino , Metilfenidato/farmacología , Tomografía de Emisión de Positrones , Corteza Prefrontal/diagnóstico por imagen , Pirrolidinas , Radiofármacos
9.
J Neurophysiol ; 119(4): 1450-1460, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29357462

RESUMEN

This study is the physiological complement to previous behavioral work that demonstrated that rhesus monkeys are able to allocate attention about the surrounding space based on brief, broadband auditory cues. Single-unit recordings were taken from the intermediate layers of the superior colliculus (iSC) while the subjects oriented to visual and auditory targets in the context of a cuing task with their heads unrestrained. The results show a correlation between behavioral manifestations of attention allocation, attention capture and inhibition of return, and modulation of target-evoked responses in single iSC neurons. NEW & NOTEWORTHY These results show for the first time a neural correlate of attention capture and inhibition of return in response to auditory stimuli in the superior colliculus of the head-unrestrained monkey.


Asunto(s)
Atención/fisiología , Percepción Auditiva/fisiología , Conducta Animal/fisiología , Señales (Psicología) , Fijación Ocular/fisiología , Percepción Espacial/fisiología , Colículos Superiores/fisiología , Percepción Visual/fisiología , Animales , Macaca mulatta , Masculino , Técnicas de Placa-Clamp
10.
PLoS One ; 10(9): e0137915, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26367010

RESUMEN

Spectro-Temporal Receptive Fields (STRFs) were estimated from both multi-unit sorted clusters and high-gamma power responses in human auditory cortex. Intracranial electrophysiological recordings were used to measure responses to a random chord sequence of Gammatone stimuli. Traditional methods for estimating STRFs from single-unit recordings, such as spike-triggered-averages, tend to be noisy and are less robust to other response signals such as local field potentials. We present an extension to recently advanced methods for estimating STRFs from generalized linear models (GLM). A new variant of regression using regularization that penalizes non-zero coefficients is described, which results in a sparse solution. The frequency-time structure of the STRF tends toward grouping in different areas of frequency-time and we demonstrate that group sparsity-inducing penalties applied to GLM estimates of STRFs reduces the background noise while preserving the complex internal structure. The contribution of local spiking activity to the high-gamma power signal was factored out of the STRF using the GLM method, and this contribution was significant in 85 percent of the cases. Although the GLM methods have been used to estimate STRFs in animals, this study examines the detailed structure directly from auditory cortex in the awake human brain. We used this approach to identify an abrupt change in the best frequency of estimated STRFs along posteromedial-to-anterolateral recording locations along the long axis of Heschl's gyrus. This change correlates well with a proposed transition from core to non-core auditory fields previously identified using the temporal response properties of Heschl's gyrus recordings elicited by click-train stimuli.


Asunto(s)
Corteza Auditiva/fisiopatología , Epilepsia/fisiopatología , Ritmo Gamma , Modelos Neurológicos , Lóbulo Temporal/fisiopatología , Corteza Auditiva/patología , Epilepsia/patología , Humanos , Lóbulo Temporal/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...