RESUMEN
Nowadays, fragrances belong to the widely used cosmetics. Their composition is designed in a way that it evolves and changes over time. In this work, the effect of fragrances on the skin was studied - the interactions between pig skin samples and fragrances and the possibility of their detection and mutual differentiation. Non-invasive techniques of vibrational spectroscopy were used to obtain the data, namely FT-IR spectroscopy with attenuated total reflection accessory and Raman microspectroscopy. Vibrational spectra were measured within 8 h with different time intervals and after 22 h from the application of fragrance for FT-IR and Raman measurements, respectively. The obtained spectra were preprocessed and subsequently evaluated by multivariate statistical methods. The study showed that skin treated by fragrances is well distinguishable from untreated skin, even after 22 h. In addition, it is possible to differentiate individual fragrances from each other; therefore, the use of spectroscopical techniques could be a potential tool for forensic analysis of fragrances.
Asunto(s)
Cosméticos , Espectrometría Raman , Animales , Porcinos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Espectrometría Raman/métodos , Odorantes , PielRESUMEN
Interactions between molecules are fundamental in biology. They occur also between amyloidogenic peptides or proteins that are associated with different amyloid diseases, which makes it important to study the mutual influence of two polypeptides on each other's properties in mixed samples. However, addressing this research question with imaging techniques faces the challenge to distinguish different polypeptides without adding artificial probes for detection. Here, we show that nanoscale infrared spectroscopy in combination with 13C, 15N-labeling solves this problem. We studied aggregated amyloid-ß peptide (Aß) and its interaction with an inhibitory peptide (NCAM1-PrP) using scattering-type scanning near-field optical microscopy. Although having similar secondary structure, labeled and unlabeled peptides could be distinguished by comparing optical phase images taken at wavenumbers characteristic for either the labeled or the unlabeled peptide. NCAM1-PrP seems to be able to associate with or to dissolve existing Aß fibrils because pure Aß fibrils were not detected after mixing.
RESUMEN
The original goal of this study was the employment of surface-enhanced Raman spectroscopy (SERS) for the analysis of real cocaine samples (containing adulterants) on composite Au-TiO2 nanomaterials to achieve low detection limits suitable for the analysis of illicit drugs and controlled substances and to exploit the photodegradation activity of TiO2 to recycle the SERS substrate for repeated analyses. The photodegradation (self-cleaning) effects of the Au-TiO2 composite nanomaterials by ultraviolet (UV) radiation are known. These effects were investigated on large-area SERS substrates immersed in the TiO2 nanoparticle aqueous suspension. The cocaine samples were measured on electrochemically gold-plated platinum targets. Surprisingly, the intensity of SERS spectra of the pure cocaine did not change after immersion in a suspension of TiO2 under UV irradiation. However, for some real cocaine samples, the overall intensity of the SERS spectra was even higher after the treatment by TiO2 and UV radiation as compared to the usual Au substrate. This unexpected signal amplification (valuable for illicit drug detection) was found to be caused mainly by the contained levamisole, which is used as a medical drug and is one of the frequent adulterants of cocaine. Both the sole effect of TiO2 on the levamisole spectrum intensity and the role of UV irradiation were inspected separately. Finally, an investigation of both the TiO2 and UV radiation treatments was performed, demonstrating (i) the necessity of both factors for selective SERS signal enhancement of the adulterant and (ii) the revision of general anticipation of the role of TiO2 in SERS systems.
Asunto(s)
Cocaína/sangre , Nanopartículas del Metal/química , Titanio/química , Oro/química , Levamisol/análisis , Espectrometría Raman , Rayos UltravioletaRESUMEN
Recent advances in nanotechnology have opened a lot of new possibilities for nanomaterials application in wide variety of industrial, pharmaceutical, medicinal and environmental applications. This review aims to description of various Fourier Transform Infrared (FTIR)-based spectroscopic techniques suitable to characterize (i) different types of nanomaterials and (ii) various macroscopic samples at their nanoscale. In the introductory section, nanomaterials are classified according to their crucial properties, i.e. chemical composition, size and surface morphology. Application of traditional FTIR techniques, such as Attenuated Total Reflection (ATR), Diffuse Reflection (DRIFT) and infrared micro (spectro)scopy, for characterization of nanomaterials and nanostructures is compared with novel optical nanoscopic techniques derived from scanning probe microscopy which enable to overcome the diffraction limit and to characterize nanomaterials at molecular scale.
RESUMEN
The healing effects of silver and gold nanoparticles (AgNPs, AuNPs) are already known from ancient times. In addition considering to their antibacterial and anti-inflammatory effects speculations are being lead with respect to these nanoparticles (NPs) also about enhancement of skin penetration properties. In this work the interactions of pig skin (PS) layers and ointments with additions of AgNPs or AuNPs prepared by standard procedures and also by "green" synthesis in a different weight proportion by vibrational spectroscopy were studied. Spectra of untreated skin and skin treated by pure ointment were measured, as well as by ointment modified by vitamins without addition of NPs or with different proportion of NPs. Kinetics of interactions of modified ointments with skin was monitored during two hours with a five-minutes interval between each two consecutive measurements. The obtained series of spectra were analyzed by multivariate statistical methods namely Partial Least Squares (PLS), Principal Component Analysis (PCA) and Soft Independent Modelling of Class Analogy (SIMCA) which revealed observation of spectral changes in time-dependent spectra and variations of the peak intensity ratios. The study showed that the effects of quantity and type of NPs on skin penetration characteristics are evident.
Asunto(s)
Nanopartículas del Metal/administración & dosificación , Piel/metabolismo , Animales , Antibacterianos/administración & dosificación , Antiinflamatorios/administración & dosificación , Oro/administración & dosificación , Pomadas/administración & dosificación , Plata/administración & dosificación , Absorción Cutánea/efectos de los fármacos , Análisis Espectral/métodos , Porcinos , Vitaminas/administración & dosificaciónRESUMEN
The Eighth Central European Conference "Chemistry towards Biology" was held in Brno, Czech Republic, on August 28-September 1, 2016 to bring together experts in biology, chemistry and design of bioactive compounds; promote the exchange of scientific results, methods and ideas; and encourage cooperation between researchers from all over the world. The topics of the conference covered "Chemistry towards Biology", meaning that the event welcomed chemists working on biology-related problems, biologists using chemical methods, and students and other researchers of the respective areas that fall within the common scope of chemistry and biology. The authors of this manuscript are plenary speakers and other participants of the symposium and members of their research teams. The following summary highlights the major points/topics of the meeting.