Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Immunol Res ; 12(1): 36-47, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38063845

RESUMEN

T cells are often compromised within cancers, allowing disease progression. We previously found that intratumoral elevations in extracellular K+, related to ongoing cell death, constrained CD8+ T-cell Akt-mTOR signaling and effector function. To alleviate K+-mediated T-cell dysfunction, we pursued genetic means to lower intracellular K+. CD8+ T cells robustly and dynamically express the Na+/K+ ATPase, among other K+ transporters. CRISPR-Cas9-mediated disruption of the Atp1a1 locus lowered intracellular K+ and elevated the resting membrane potential (i.e., Vm, Ψ). Despite compromised Ca2+ influx, Atp1a1-deficient T cells harbored tonic hyperactivity in multiple signal transduction cascades, along with a phenotype of exhaustion in mouse and human CD8+ T cells. Provision of exogenous K+ restored intracellular levels in Atp1a1-deficient T cells and prevented damaging levels of reactive oxygen species (ROS), and both antioxidant treatment and exogenous K+ prevented Atp1a1-deficient T-cell exhaustion in vitro. T cells lacking Atp1a1 had compromised persistence and antitumor activity in a syngeneic model of orthotopic murine melanoma. Translational application of these findings will require balancing the beneficial aspects of intracellular K+ with the ROS-dependent nature of T-cell effector function. See related Spotlight by Banuelos and Borges da Silva, p. 6.


Asunto(s)
Transducción de Señal , Agotamiento de Células T , Humanos , Animales , Ratones , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/genética , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Linfocitos T CD8-positivos/metabolismo
2.
bioRxiv ; 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37745435

RESUMEN

The cancer-killing activity of T cells is often compromised within tumors, allowing disease progression. We previously found that intratumoral elevations in extracellular K + related to ongoing cell death constrained CD8 + T cell Akt-mTOR signaling and effector function (1,2). To alleviate K + mediated T cell suppression, we pursued genetic means to lower intracellular K + . Transcriptomic analysis of CD8 + T cells demonstrated the Na + /K + ATPase to be robustly and dynamically expressed. CRISPR-Cas9 mediated deletion of the catalytic alpha subunit of the Na + /K + ATPase lowered intracellular K + but produced tonic hyperactivity in multiple signal transduction cascades along with the acquisition of co-inhibitory receptors and terminal differentiation in mouse and human CD8 + T cells. Mechanistically, Na + /K + ATPase disruption led to ROS accumulation due to depletion of intracellular K + in T cells. Antioxidant treatment or high K + media prevented Atp1a1 deficient T cells from exhausted T (T Ex ) cell formation. Consistent with transcriptional and proteomic data suggesting a T Ex cell phenotype, T cells lacking Atp1a1 had compromised persistence and antitumor activity in a syngeneic model of orthotopic murine melanoma. Translational application of these findings will include efforts to lower intracellular K + while limiting ROS accumulation within tumor specific T cells. Synopsis: High extracellular K + (↑[K + ] e ) is found within tumors and suppresses T cell effector function. Collier et al. find that deletion of the Na + /K + ATPase in T cells lowers intracellular K + and promotes ROS accumulation, tonic signal transduction and T cell exhaustion owing to ROS accumulation. Engineering T cell ion transport is an important consideration for cancer immunotherapy.

3.
Clin Cancer Res ; 27(17): 4923-4936, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34145028

RESUMEN

PURPOSE: Lineage plasticity in prostate cancer-most commonly exemplified by loss of androgen receptor (AR) signaling and a switch from a luminal to alternate differentiation program-is now recognized as a treatment resistance mechanism. Lineage plasticity is a spectrum, but neuroendocrine prostate cancer (NEPC) is the most virulent example. Currently, there are limited treatments for NEPC. Moreover, the incidence of treatment-emergent NEPC (t-NEPC) is increasing in the era of novel AR inhibitors. In contradistinction to de novo NEPC, t-NEPC tumors often express the AR, but AR's functional role in t-NEPC is unknown. Furthermore, targetable factors that promote t-NEPC lineage plasticity are also unclear. EXPERIMENTAL DESIGN: Using an integrative systems biology approach, we investigated enzalutamide-resistant t-NEPC cell lines and their parental, enzalutamide-sensitive adenocarcinoma cell lines. The AR is still expressed in these t-NEPC cells, enabling us to determine the role of the AR and other key factors in regulating t-NEPC lineage plasticity. RESULTS: AR inhibition accentuates lineage plasticity in t-NEPC cells-an effect not observed in parental, enzalutamide-sensitive adenocarcinoma cells. Induction of an AR-repressed, lineage plasticity program is dependent on activation of the transcription factor E2F1 in concert with the BET bromodomain chromatin reader BRD4. BET inhibition (BETi) blocks this E2F1/BRD4-regulated program and decreases growth of t-NEPC tumor models and a subset of t-NEPC patient tumors with high activity of this program in a BETi clinical trial. CONCLUSIONS: E2F1 and BRD4 are critical for activating an AR-repressed, t-NEPC lineage plasticity program. BETi is a promising approach to block this program.


Asunto(s)
Antagonistas de Receptores Androgénicos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Benzamidas/uso terapéutico , Carcinoma Neuroendocrino/tratamiento farmacológico , Factor de Transcripción E2F1/efectos de los fármacos , Factor de Transcripción E2F1/fisiología , Nitrilos/uso terapéutico , Feniltiohidantoína/uso terapéutico , Neoplasias de la Próstata/tratamiento farmacológico , Proteínas/antagonistas & inhibidores , Línea Celular Tumoral , Humanos , Masculino
4.
Nat Rev Clin Oncol ; 18(1): 35-55, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32760015

RESUMEN

The proto-oncogene ROS1 encodes a receptor tyrosine kinase with an unknown physiological role in humans. Somatic chromosomal fusions involving ROS1 produce chimeric oncoproteins that drive a diverse range of cancers in adult and paediatric patients. ROS1-directed tyrosine kinase inhibitors (TKIs) are therapeutically active against these cancers, although only early-generation multikinase inhibitors have been granted regulatory approval, specifically for the treatment of ROS1 fusion-positive non-small-cell lung cancers; histology-agnostic approvals have yet to be granted. Intrinsic or extrinsic mechanisms of resistance to ROS1 TKIs can emerge in patients. Potential factors that influence resistance acquisition include the subcellular localization of the particular ROS1 oncoprotein and the TKI properties such as the preferential kinase conformation engaged and the spectrum of targets beyond ROS1. Importantly, the polyclonal nature of resistance remains underexplored. Higher-affinity next-generation ROS1 TKIs developed to have improved intracranial activity and to mitigate ROS1-intrinsic resistance mechanisms have demonstrated clinical efficacy in these regards, thus highlighting the utility of sequential ROS1 TKI therapy. Selective ROS1 inhibitors have yet to be developed, and thus the specific adverse effects of ROS1 inhibition cannot be deconvoluted from the toxicity profiles of the available multikinase inhibitors. Herein, we discuss the non-malignant and malignant biology of ROS1, the diagnostic challenges that ROS1 fusions present and the strategies to target ROS1 fusion proteins in both treatment-naive and acquired-resistance settings.


Asunto(s)
Neoplasias/diagnóstico , Neoplasias/terapia , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Humanos , Neoplasias/enzimología , Neoplasias/genética , Proteínas Tirosina Quinasas/genética , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/genética , Ensayos Clínicos Controlados Aleatorios como Asunto
5.
Sci Signal ; 11(539)2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-30018082

RESUMEN

The protein tyrosine phosphatase PTPN11 is implicated in the pathogenesis of juvenile myelomonocytic leukemia (JMML), acute myeloid leukemia (AML), and other malignancies. Activating mutations in PTPN11 increase downstream proliferative signaling and cell survival. We investigated the signaling upstream of PTPN11 in JMML and AML cells and found that PTPN11 was activated by the nonreceptor tyrosine/serine/threonine kinase TNK2 and that PTPN11-mutant JMML and AML cells were sensitive to TNK2 inhibition. In cultured human cell-based assays, PTPN11 and TNK2 interacted directly, enabling TNK2 to phosphorylate PTPN11, which subsequently dephosphorylated TNK2 in a negative feedback loop. Mutations in PTPN11 did not affect this physical interaction but increased the basal activity of PTPN11 such that TNK2-mediated activation was additive. Consequently, coexpression of TNK2 and mutant PTPN11 synergistically increased mitogen-activated protein kinase (MAPK) signaling and enhanced colony formation in bone marrow cells from mice. Chemical inhibition of TNK2 blocked MAPK signaling and colony formation in vitro and decreased disease burden in a patient with PTPN11-mutant JMML who was treated with the multikinase (including TNK2) inhibitor dasatinib. Together, these data suggest that TNK2 is a promising therapeutic target for PTPN11-mutant leukemias.


Asunto(s)
Dasatinib/farmacología , Leucemia Mieloide Aguda/patología , Leucemia Mielomonocítica Juvenil/patología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Mutaciones Letales Sintéticas , Animales , Niño , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/enzimología , Leucemia Mieloide Aguda/genética , Leucemia Mielomonocítica Juvenil/tratamiento farmacológico , Leucemia Mielomonocítica Juvenil/enzimología , Leucemia Mielomonocítica Juvenil/genética , Masculino , Ratones , Pronóstico , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal , Tasa de Supervivencia , Ensayo de Tumor de Célula Madre
6.
Anemia ; 2012: 481583, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22693661

RESUMEN

The Fanconi Anemia (FA) pathway consists of proteins involved in repairing DNA damage, including interstrand cross-links (ICLs). The pathway contains an upstream multiprotein core complex that mediates the monoubiquitylation of the FANCD2 and FANCI heterodimer, and a downstream pathway that converges with a larger network of proteins with roles in homologous recombination and other DNA repair pathways. Selective killing of cancer cells with an intact FA pathway but deficient in certain other DNA repair pathways is an emerging approach to tailored cancer therapy. Inhibiting the FA pathway becomes selectively lethal when certain repair genes are defective, such as the checkpoint kinase ATM. Inhibiting the FA pathway in ATM deficient cells can be achieved with small molecule inhibitors, suggesting that new cancer therapeutics could be developed by identifying FA pathway inhibitors to treat cancers that contain defects that are synthetic lethal with FA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...