Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
ACS Appl Mater Interfaces ; 11(38): 35312-35318, 2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-31448895

RESUMEN

Natural materials have been used as glues throughout human history. Over the last century, society has come to rely heavily on synthetic, petroleum-based adhesives instead, consuming ∼14 million tons per year. In recent years, however, there has been a resurgence of glues formed with renewable materials. This work seeks to integrate the two to form strong adhesives. Here, elemental sulfur was combined with diallyl sulfide (DAS), diallyl disulfide (DADS), and garlic essential oil (GEO) to form adhesive polymers from recycled petroleum waste and renewable monomers. The labile sulfur bonds in DADS and GEO allowed these monomers to be homopolymerized, forming polysulfides entirely from renewable monomers. Heating these materials causes them to transition from viscous liquids to hardened solids. A family of copolymers containing different garlic components and varying sulfur-to-monomer ratios were synthesized, characterized, and tested for this study. Polymer structures were confirmed by 1H NMR. Changes to the polysulfide material properties upon curing were examined by gel permeation chromatography and differential scanning calorimetry. Characterization data of cured polymers were used to choose the optimal cure temperature for adhesion studies. The adhesion strength of polysulfides with varying compositions was determined by single-lap shear testing. Strong bonding was obtained for all garlic-based polysulfides with strengths 3 times higher than commercial hide glue.

3.
J Vis Exp ; (147)2019 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-31157781

RESUMEN

Elemental sulfur (S8) is a byproduct of the petroleum industry with millions of tons produced annually. Such abundant production and limited applications lead to sulfur as a cost-efficient reagent for polymer synthesis. Inverse vulcanization combines elemental sulfur with a variety of monomers to form functional polysulfides without the need for solvents. Short reaction times and straight forward synthetic methods have led to rapid expansion of inverse vulcanization. However, high reaction temperatures (>160 °C) limit the types of monomers that can be used. Here, the dynamic sulfur bonds in poly(S-divinylbenzene) are used to initiate polymerization at much lower temperatures. The S-S bonds in the prepolymer are less stable than S-S bonds in S8, allowing radical formation at 90 °C rather than 159 °C. A variety of allyl and vinyl ethers have been incorporated to form terpolymers. The resulting materials were characterized by 1H NMR, gel permeation chromatography, and differential scanning calorimetry, as well as examining changes in solubility. This method expands on the solvent-free, thiyl radical chemistry utilized by inverse vulcanization to create polysulfides at mild temperatures. This development broadens the range of monomers that can be incorporated thus expanding the accessible material properties and possible applications.


Asunto(s)
Polímeros/síntesis química , Eliminación de Residuos/métodos , Azufre/química , Compuestos de Vinilo/química , Radicales Libres/química , Polimerizacion , Polímeros/química , Sulfuros/síntesis química , Sulfuros/química , Temperatura
4.
Mol Biosyst ; 12(6): 1756-9, 2016 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-27063346

RESUMEN

The post-translational modification of serine or threonine residues of proteins with a single N-acetylglucosamine monosaccharide (O-GlcNAcylation) is essential for cell survival and function. However, relatively few O-GlcNAc modification sites have been mapped due to the difficulty of enriching and detecting O-GlcNAcylated peptides from complex samples. Here we describe an improved approach to quantitatively label and enrich O-GlcNAcylated proteins for site identification. Chemoenzymatic labelling followed by copper(i)-catalysed azide-alkyne cycloaddition (CuAAC) installs a new mass spectrometry (MS)-compatible linker designed for facile purification of O-GlcNAcylated proteins from cell lysates. The linker also allows subsequent quantitative release of O-GlcNAcylated proteins for downstream MS analysis. We validate the approach by unambiguously identifying several established O-GlcNAc sites on the proteins α-crystallin and O-GlcNAc transferase (OGT), as well as discovering new, previously unreported sites on OGT. Notably, these novel sites on OGT lie in key functional domains of the protein, underscoring how this site identification method may reveal important biological insights into protein activity and regulation.


Asunto(s)
Acetilglucosamina/química , Acetilglucosamina/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional , Cromatografía Liquida , Glicosilación , Humanos , Espectrometría de Masas , Coloración y Etiquetado
5.
J Biomed Mater Res A ; 104(4): 983-90, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26714824

RESUMEN

The development of adhesives suitable for biomedical applications has been challenging given that these materials must exhibit sufficient adhesion strengths and biocompatibility. Biomimetic materials inspired by mussel adhesive proteins appear to contain many of the necessary characteristics for biomedical adhesives. In particular, poly[(3,4-dihydroxystyrene)-co-styrene] has been shown to be a high strength adhesive material with bonding comparable to or even greater than several commercial glues. Herein, a thorough study on the cytocompatibility of this copolymer provides insights on the suitability of a mussel-mimicking adhesive for applications development. The cytotoxicity of poly[(3,4-dihydroxystyrene)-co-styrene] was evaluated through assessment of the viability, proliferation rate, and morphology of NIH/3T3 fibroblasts when cultured with copolymer extracts or directly in contact with the adhesive. After 1 and 3 days of culture, both the copolymer alone and copolymer cross-linked with periodate exhibited minimal effects on cell viability. Likewise, cells cultured on the copolymer displayed proliferation rates and morphologies similar to cells on the poly-L-lysine control. These results indicate that poly[(3,4-dihydroxystyrene)-co-styrene] is highly cytocompatible and therefore a promising material for use where biological contact is important.


Asunto(s)
Adhesivos/toxicidad , Materiales Biocompatibles/toxicidad , Materiales Biomiméticos/toxicidad , Supervivencia Celular/efectos de los fármacos , Poliestirenos/toxicidad , Adhesivos/química , Animales , Materiales Biocompatibles/química , Materiales Biomiméticos/química , Bivalvos/química , Ratones , Células 3T3 NIH , Poliestirenos/química
6.
ACS Appl Mater Interfaces ; 5(11): 5091-6, 2013 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-23668520

RESUMEN

Characterization of marine biological adhesives are teaching us how nature makes materials and providing new ideas for synthetic systems. One of the most widely studied adhering animals is the marine mussel. This mollusk bonds to wet rocks by producing an adhesive from cross-linked proteins. Several laboratories are now making synthetic mimics of mussel adhesive proteins, with 3,4-dihydroxyphenylalanine (DOPA) or similar molecules pendant from polymer chains. In select cases, appreciable bulk bonding results, with strengths as high as commercial glues. Polymer molecular weight is amongst several parameters that need to be examined in order to both understand biomimetic adhesion as well as to maximize performance. Experiments presented here explore how the bulk adhesion of a mussel mimetic polymer varies as a function of molecular weight. Systematic structure-function studies were carried out both with and without the presence of an oxidative cross-linker. Without cross-linking, higher molecular weights generally afforded higher adhesion. When a [N(C4H9)4](IO4) cross-linker was added, adhesion peaked at molecular weights of ~50,000-65,000 g/mol. These data help to illustrate how changes to the balance of cohesion versus adhesion influence bulk bonding. Mussel adhesive plaques achieve this balance by incorporating several proteins with molecular weights ranging from 6000 to 110,000 g/mol. To mimic these varied proteins we made a blend of polymers containing a range of molecular weights. Interestingly, this blend adhered more strongly than any of the individual polymers when cross-linked with [N(C4H9)4](IO4). These results are helping us to both understand the origins of biological materials as well as design high performance polymers.


Asunto(s)
Adhesivos/química , Materiales Biomiméticos/química , Biomimética/métodos , Bivalvos/química , Polímeros/química , Adhesividad , Animales , Catecoles/química , Reactivos de Enlaces Cruzados/química , Dihidroxifenilalanina/química , Peso Molecular , Proteínas/química , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA