RESUMEN
The platelet-derived growth factor-BB (PDGF-BB) pathway provides critical regulation of cerebrovascular pericytes, orchestrating their investment and retention within the brain microcirculation. Dysregulated PDGF Receptor-beta (PDGFRß) signaling can lead to pericyte defects that compromise blood-brain barrier (BBB) integrity and cerebral perfusion, impairing neuronal activity and viability, which fuels cognitive and memory deficits. Receptor tyrosine kinases (RTKs) like PDGF-BB and vascular endothelial growth factor-A (VEGF-A) are often modulated by soluble isoforms of cognate receptors that establish signaling activity within a physiological range. Soluble PDGFRß (sPDGFRß) isoforms have been reported to form by enzymatic cleavage from cerebrovascular mural cells, and pericytes in particular, largely under pathological conditions. However, pre-mRNA alternative splicing has not been widely explored as a possible mechanism for generating sPDGFRß variants, and specifically during tissue homeostasis. Here, we found sPDGFRß protein in the murine brain and other tissues under normal, physiological conditions. Utilizing brain samples for follow-on analysis, we identified mRNA sequences corresponding to sPDGFRß isoforms, which facilitated construction of predicted protein structures and related amino acid sequences. Human cell lines yielded comparable sequences and protein model predictions. Retention of ligand binding capacity was confirmed for sPDGFRß by co-immunoprecipitation. Visualizing fluorescently labeled sPDGFRß transcripts revealed a spatial distribution corresponding to murine brain pericytes alongside cerebrovascular endothelium. Soluble PDGFRß protein was detected throughout the brain parenchyma in distinct regions such as along the lateral ventricles, with signals also found more broadly adjacent to cerebral microvessels consistent with pericyte labeling. To better understand how sPDGFRß variants might be regulated, we found elevated transcript and protein levels in the murine brain with age, and acute hypoxia increased sPDGFRß variant transcripts in a cell-based model of intact vessels. Our findings indicate that soluble isoforms of PDGFRß likely arise from pre-mRNA alternative splicing, in addition to enzymatic cleavage mechanisms, and these variants exist under normal physiological conditions. Follow-on studies will be needed to establish potential roles for sPDGFRß in regulating PDGF-BB signaling to maintain pericyte quiescence, BBB integrity, and cerebral perfusion - critical processes underlying neuronal health and function, and in turn memory and cognition.
RESUMEN
Microvascular networks are vital components of the cardiovascular system, performing many key roles in maintaining the health and homeostasis of the tissues and organs in which they develop. As discussed in this review, the molecular and cellular components within the microcirculation orchestrate critical processes to establish functional capillary beds, including organization of endothelial cell (EC) polarity, guiding investment of vascular pericytes (PCs), and building the specialized extracellular matrix (ECM) that comprises the vascular basement membrane (vBM). Herein, we further discuss the unique features of the microvasculature in the central nervous system (CNS), focusing on the cells contributing to the neurovascular unit (NVU) that form and maintain the blood-brain barrier (BBB). With a focus on vascular PCs, we offer basic and clinical perspectives on neurovascular-related pathologies that involve defects within the cerebral microvasculature. Specifically, we present microvascular anomalies associated with glioblastoma multiforme (GBM) including defects in vascular-immune cell interactions and associated clinical therapies targeting microvessels (ie, vascular-disrupting/anti-angiogenic agents and focused ultrasound). We also discuss the involvement of the microcirculation in stroke responses and potential therapeutic approaches. Our goal was to compare the cellular and molecular changes that occur in the microvasculature and NVU, and to provide a commentary on factors driving disease progression in GBM and stroke. We conclude with a forward-looking perspective on the importance of microcirculation research in developing clinical treatments for these devastating conditions.
Asunto(s)
Glioma , Accidente Cerebrovascular , Barrera Hematoencefálica , Humanos , Microvasos , PericitosRESUMEN
SINC, a new type III secreted protein of the avian and human pathogen Chlamydia psittaci, uniquely targets the nuclear envelope of C. psittaci-infected cells and uninfected neighboring cells. Digitonin-permeabilization studies of SINC-GFP-transfected HeLa cells indicate that SINC targets the inner nuclear membrane. SINC localization at the nuclear envelope was blocked by importazole, confirming SINC import into the nucleus. Candidate partners were identified by proximity to biotin ligase-fused SINC in HEK293 cells and mass spectrometry (BioID). This strategy identified 22 candidates with high confidence, including the nucleoporin ELYS, lamin B1, and four proteins (emerin, MAN1, LAP1, and LBR) of the inner nuclear membrane, suggesting that SINC interacts with host proteins that control nuclear structure, signaling, chromatin organization, and gene silencing. GFP-SINC association with the native LEM-domain protein emerin, a conserved component of nuclear "lamina" structure, or with a complex containing emerin was confirmed by GFP pull down. Our findings identify SINC as a novel bacterial protein that targets the nuclear envelope with the capability of globally altering nuclear envelope functions in the infected host cell and neighboring uninfected cells. These properties may contribute to the aggressive virulence of C. psittaci.
Asunto(s)
Proteínas Bacterianas/metabolismo , Chlamydophila psittaci/metabolismo , Membrana Nuclear/microbiología , Chlamydophila psittaci/patogenicidad , Células HEK293 , Células HeLa , Humanos , Espectrometría de Masas , Membrana Nuclear/metabolismoRESUMEN
Emerin is a conserved membrane component of nuclear lamina structure. Here, we report an advance in understanding the molecular basis of emerin function: intermolecular emerin-emerin association. There were two modes: one mediated by association of residues 170-220 in one emerin molecule to residues 170-220 in another, and the second involving residues 170-220 and 1-132. Deletion analysis showed residues 187-220 contain a positive element essential for intermolecular association in cells. By contrast, deletion of residues 168-186 inactivated a proposed negative element, required to limit or control association. Association of GFP-emerin with nuclear BAF in cells required the LEM domain (residues 1-47) and the positive element. Emerin peptide arrays revealed direct binding of residues 170-220 to residues 206-225 (the proposed positive element), residues 147-174 (particularly P(153)MYGRDSAYQSITHYRP(169)) and the LEM domain. Emerin residues 1-132 and 159-220 were each sufficient to bind lamin A or B1 tails in vitro, identifying two independent regions of molecular contact with lamins. These results, and predicted emerin intrinsic disorder, support the hypothesis that there are multiple 'backbone' and LEM-domain configurations in a proposed intermolecular emerin network at the nuclear envelope.