Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Genet ; 12: 637017, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33679899

RESUMEN

This paper evaluates the potential of maximizing genetic gain in dairy cattle breeding by optimizing investment into phenotyping and genotyping. Conventional breeding focuses on phenotyping selection candidates or their close relatives to maximize selection accuracy for breeders and quality assurance for producers. Genomic selection decoupled phenotyping and selection and through this increased genetic gain per year compared to the conventional selection. Although genomic selection is established in well-resourced breeding programs, small populations and developing countries still struggle with the implementation. The main issues include the lack of training animals and lack of financial resources. To address this, we simulated a case-study of a small dairy population with a number of scenarios with equal available resources yet varied use of resources for phenotyping and genotyping. The conventional progeny testing scenario collected 11 phenotypic records per lactation. In genomic selection scenarios, we reduced phenotyping to between 10 and 1 phenotypic records per lactation and invested the saved resources into genotyping. We tested these scenarios at different relative prices of phenotyping to genotyping and with or without an initial training population for genomic selection. Reallocating a part of phenotyping resources for repeated milk records to genotyping increased genetic gain compared to the conventional selection scenario regardless of the amount and relative cost of phenotyping, and the availability of an initial training population. Genetic gain increased by increasing genotyping, despite reduced phenotyping. High-genotyping scenarios even saved resources. Genomic selection scenarios expectedly increased accuracy for young non-phenotyped candidate males and females, but also proven females. This study shows that breeding programs should optimize investment into phenotyping and genotyping to maximize return on investment. Our results suggest that any dairy breeding program using conventional progeny testing with repeated milk records can implement genomic selection without increasing the level of investment.

2.
Genet Sel Evol ; 52(1): 37, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32635893

RESUMEN

BACKGROUND: Sequence-based genome-wide association studies (GWAS) provide high statistical power to identify candidate causal mutations when a large number of individuals with both sequence variant genotypes and phenotypes is available. A meta-analysis combines summary statistics from multiple GWAS and increases the power to detect trait-associated variants without requiring access to data at the individual level of the GWAS mapping cohorts. Because linkage disequilibrium between adjacent markers is conserved only over short distances across breeds, a multi-breed meta-analysis can improve mapping precision. RESULTS: To maximise the power to identify quantitative trait loci (QTL), we combined the results of nine within-population GWAS that used imputed sequence variant genotypes of 94,321 cattle from eight breeds, to perform a large-scale meta-analysis for fat and protein percentage in cattle. The meta-analysis detected (p ≤ 10-8) 138 QTL for fat percentage and 176 QTL for protein percentage. This was more than the number of QTL detected in all within-population GWAS together (124 QTL for fat percentage and 104 QTL for protein percentage). Among all the lead variants, 100 QTL for fat percentage and 114 QTL for protein percentage had the same direction of effect in all within-population GWAS. This indicates either persistence of the linkage phase between the causal variant and the lead variant across breeds or that some of the lead variants might indeed be causal or tightly linked with causal variants. The percentage of intergenic variants was substantially lower for significant variants than for non-significant variants, and significant variants had mostly moderate to high minor allele frequencies. Significant variants were also clustered in genes that are known to be relevant for fat and protein percentages in milk. CONCLUSIONS: Our study identified a large number of QTL associated with fat and protein percentage in dairy cattle. We demonstrated that large-scale multi-breed meta-analysis reveals more QTL at the nucleotide resolution than within-population GWAS. Significant variants were more often located in genic regions than non-significant variants and a large part of them was located in potentially regulatory regions.


Asunto(s)
Bovinos/genética , Genotipo , Desequilibrio de Ligamiento , Lípidos/genética , Proteínas de la Leche/genética , Leche/normas , Animales , Frecuencia de los Genes , Leche/metabolismo , Polimorfismo Genético , Sitios de Carácter Cuantitativo
3.
Genet Sel Evol ; 52(1): 38, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32640985

RESUMEN

BACKGROUND: We describe the latest improvements to the long-range phasing (LRP) and haplotype library imputation (HLI) algorithms for successful phasing of both datasets with one million individuals and datasets genotyped using different sets of single nucleotide polymorphisms (SNPs). Previous publicly available implementations of the LRP algorithm implemented in AlphaPhase could not phase large datasets due to the computational cost of defining surrogate parents by exhaustive all-against-all searches. Furthermore, the AlphaPhase implementations of LRP and HLI were not designed to deal with large amounts of missing data that are inherent when using multiple SNP arrays. METHODS: We developed methods that avoid the need for all-against-all searches by performing LRP on subsets of individuals and then concatenating the results. We also extended LRP and HLI algorithms to enable the use of different sets of markers, including missing values, when determining surrogate parents and identifying haplotypes. We implemented and tested these extensions in an updated version of AlphaPhase, and compared its performance to the software package Eagle2. RESULTS: A simulated dataset with one million individuals genotyped with the same 6711 SNPs for a single chromosome took less than a day to phase, compared to more than seven days for Eagle2. The percentage of correctly phased alleles at heterozygous loci was 90.2 and 99.9% for AlphaPhase and Eagle2, respectively. A larger dataset with one million individuals genotyped with 49,579 SNPs for a single chromosome took AlphaPhase 23 days to phase, with 89.9% of alleles at heterozygous loci phased correctly. The phasing accuracy was generally lower for datasets with different sets of markers than with one set of markers. For a simulated dataset with three sets of markers, 1.5% of alleles at heterozygous positions were phased incorrectly, compared to 0.4% with one set of markers. CONCLUSIONS: The improved LRP and HLI algorithms enable AlphaPhase to quickly and accurately phase very large and heterogeneous datasets. AlphaPhase is an order of magnitude faster than the other tested packages, although Eagle2 showed a higher level of phasing accuracy. The speed gain will make phasing achievable for very large genomic datasets in livestock, enabling more powerful breeding and genetics research and application.


Asunto(s)
Algoritmos , Conjuntos de Datos como Asunto/normas , Estudio de Asociación del Genoma Completo/métodos , Haplotipos , Animales , Estudio de Asociación del Genoma Completo/normas , Heterocigoto , Ganado/genética , Polimorfismo de Nucleótido Simple
4.
Genet Sel Evol ; 51(1): 14, 2019 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-30995904

RESUMEN

BACKGROUND: In this paper, we simulate deleterious load in an animal breeding program, and compare the efficiency of genome editing and selection for decreasing it. Deleterious variants can be identified by bioinformatics screening methods that use sequence conservation and biological prior information about protein function. However, once deleterious variants have been identified, how can they be used in breeding? RESULTS: We simulated a closed animal breeding population that is subject to both natural selection against deleterious load and artificial selection for a quantitative trait representing the breeding goal. Deleterious load was polygenic and was due to either codominant or recessive variants. We compared strategies for removal of deleterious alleles by genome editing (RAGE) to selection against carriers. When deleterious variants were codominant, the best strategy for prioritizing variants was to prioritize low-frequency variants. When deleterious variants were recessive, the best strategy was to prioritize variants with an intermediate frequency. Selection against carriers was inefficient when variants were codominant, but comparable to editing one variant per sire when variants were recessive. CONCLUSIONS: Genome editing of deleterious alleles reduces deleterious load, but requires the simultaneous editing of multiple deleterious variants in the same sire to be effective when deleterious variants are recessive. In the short term, selection against carriers is a possible alternative to genome editing when variants are recessive. Our results suggest that, in the future, there is the potential to use RAGE against deleterious load in animal breeding.


Asunto(s)
Cruzamiento/métodos , Biología Computacional/métodos , Edición Génica/métodos , Alelos , Animales , Simulación por Computador , Frecuencia de los Genes/genética , Variación Genética , Endogamia , Fenotipo , Selección Genética , Selección Artificial/genética
5.
Genet Sel Evol ; 51(1): 9, 2019 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-30836944

RESUMEN

BACKGROUND: In livestock, deleterious recessive alleles can result in reduced economic performance of homozygous individuals in multiple ways, e.g. early embryonic death, death soon after birth, or semi-lethality with incomplete penetrance causing reduced viability. While death is an easy phenotype to score, reduced viability is not as easy to identify. However, it can sometimes be observed as reduced conception rates, longer calving intervals, or lower survival for live born animals. METHODS: In this paper, we searched for haplotypes that carry putatively recessive lethal or semi-lethal alleles in 132,725 genotyped Irish beef cattle from five breeds: Aberdeen Angus, Charolais, Hereford, Limousin, and Simmental. We phased the genotypes in sliding windows along the genome and used five tests to identify haplotypes with absence of or reduced homozygosity. Then, we associated the identified haplotypes with 44,351 insemination records that indicated early embryonic death, and postnatal survival records. Finally, we assessed haplotype pleiotropy by estimating substitution effects on estimates of breeding value for 15 economically important traits in beef production. RESULTS: We found support for one haplotype that carries a putatively recessive lethal (chromosome 16 in Simmental) and two haplotypes that carry semi-lethal alleles (chromosome 14 in Aberdeen Angus and chromosome 19 in Charolais), with population frequencies of 8.8, 15.2, and 14.4%, respectively. These three haplotypes showed pleiotropic effects on economically important traits for beef production. Their allele substitution effects are €2.30, €3.42, and €1.47 for the terminal index and €1.03, - €3.11, and - €0.88 for the replacement index, where the standard deviations for the terminal index are €22.52, €18.65, and €22.70 and for the replacement index they are €31.35, €29.82, and €35.79. We identified ZFAT as the candidate gene for semi-lethality in Aberdeen Angus, several candidate genes for the lethal Simmental haplotype, and no candidate genes for the semi-lethal Charolais haplotype. CONCLUSIONS: We analysed genotype, reproduction, survival, and production data to detect haplotypes that carry putatively recessive lethal or semi-lethal alleles in Irish beef cattle and identified one lethal and two semi-lethal haplotypes, which have pleiotropic effects on economically important traits in beef production.


Asunto(s)
Bovinos/genética , Frecuencia de los Genes , Genes Recesivos , Pleiotropía Genética , Haplotipos , Carne Roja/normas , Animales , Estudio de Asociación del Genoma Completo/veterinaria , Genotipo , Carácter Cuantitativo Heredable
6.
G3 (Bethesda) ; 9(1): 203-215, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30563834

RESUMEN

In this work, we performed simulations to develop and test a strategy for exploiting surrogate sire technology in animal breeding programs. Surrogate sire technology allows the creation of males that lack their own germline cells, but have transplanted spermatogonial stem cells from donor males. With this technology, a single elite male donor could give rise to huge numbers of progeny, potentially as much as all the production animals in a particular time period. One hundred replicates of various scenarios were performed. Scenarios followed a common overall structure but differed in the strategy used to identify elite donors and how these donors were used in the product development part. The results of this study showed that using surrogate sire technology would significantly increase the genetic merit of commercial sires, by as much as 6.5 to 9.2 years' worth of genetic gain compared to a conventional breeding program. The simulations suggested that a strategy involving three stages (an initial genomic test followed by two subsequent progeny tests) was the most effective of all the strategies tested. The use of one or a handful of elite donors to generate the production animals would be very different to current practice. While the results demonstrate the great potential of surrogate sire technology there are considerable risks but also other opportunities. Practical implementation of surrogate sire technology would need to account for these.


Asunto(s)
Células Madre Germinales Adultas , Animales Domésticos/genética , Ganado/genética , Selección Genética , Animales , Animales Domésticos/crecimiento & desarrollo , Cruzamiento , Femenino , Genoma/genética , Lactancia/genética , Ganado/crecimiento & desarrollo , Masculino
7.
Genet Sel Evol ; 49(1): 3, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-28093068

RESUMEN

BACKGROUND: This paper uses simulation to explore how gene drives can increase genetic gain in livestock breeding programs. Gene drives are naturally occurring phenomena that cause a mutation on one chromosome to copy itself onto its homologous chromosome. METHODS: We simulated nine different breeding and editing scenarios with a common overall structure. Each scenario began with 21 generations of selection, followed by 20 generations of selection based on true breeding values where the breeder used selection alone, selection in combination with genome editing, or selection with genome editing and gene drives. In the scenarios that used gene drives, we varied the probability of successfully incorporating the gene drive. For each scenario, we evaluated genetic gain, genetic variance [Formula: see text], rate of change in inbreeding ([Formula: see text]), number of distinct quantitative trait nucleotides (QTN) edited, rate of increase in favourable allele frequencies of edited QTN and the time to fix favourable alleles. RESULTS: Gene drives enhanced the benefits of genome editing in seven ways: (1) they amplified the increase in genetic gain brought about by genome editing; (2) they amplified the rate of increase in the frequency of favourable alleles and reduced the time it took to fix them; (3) they enabled more rapid targeting of QTN with lesser effect for genome editing; (4) they distributed fixed editing resources across a larger number of distinct QTN across generations; (5) they focussed editing on a smaller number of QTN within a given generation; (6) they reduced the level of inbreeding when editing a subset of the sires; and (7) they increased the efficiency of converting genetic variation into genetic gain. CONCLUSIONS: Genome editing in livestock breeding results in short-, medium- and long-term increases in genetic gain. The increase in genetic gain occurs because editing increases the frequency of favourable alleles in the population. Gene drives accelerate the increase in allele frequency caused by editing, which results in even higher genetic gain over a shorter period of time with no impact on inbreeding.


Asunto(s)
Cruzamiento , Edición Génica , Variación Genética , Genoma , Ganado/genética , Alelos , Animales , Evolución Molecular , Frecuencia de los Genes , Genómica , Endogamia , Patrón de Herencia , Modelos Genéticos , Linaje , Carácter Cuantitativo Heredable , Selección Genética
8.
BMC Genomics ; 17: 30, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26732811

RESUMEN

BACKGROUND: The limited genetic diversity of elite maize germplasms raises concerns about the potential to breed for new challenges. Initiatives have been formed over the years to identify and utilize useful diversity from landraces to overcome this issue. The aim of this study was to evaluate the proposed designs to initiate a pre-breeding program within the Seeds of Discovery (SeeD) initiative with emphasis on harnessing polygenic variation from landraces using genomic selection. We evaluated these designs with stochastic simulation to provide decision support about the effect of several design factors on the quality of resulting (pre-bridging) germplasm. The evaluated design factors were: i) the approach to initiate a pre-breeding program from the selected landraces, doubled haploids of the selected landraces, or testcrosses of the elite hybrid and selected landraces, ii) the genetic parameters of landraces and phenotypes, and iii) logistical factors related to the size and management of a pre-breeding program. RESULTS: The results suggest a pre-breeding program should be initiated directly from landraces. Initiating from testcrosses leads to a rapid reconstruction of the elite donor genome during further improvement of the pre-bridging germplasm. The analysis of accuracy of genomic predictions across the various design factors indicate the power of genomic selection for pre-breeding programs with large genetic diversity and constrained resources for data recording. The joint effect of design factors was summarized with decision trees with easy to follow guidelines to optimize pre-breeding efforts of SeeD and similar initiatives. CONCLUSIONS: Results of this study provide guidelines for SeeD and similar initiatives on how to initiate pre-breeding programs that aim to harness polygenic variation from landraces.


Asunto(s)
Variación Genética , Genoma de Planta/genética , Selección Genética , Zea mays/genética , Cruzamiento , Genotipo , Haploidia , Herencia Multifactorial/genética , Fenotipo
10.
Genet Sel Evol ; 47: 55, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26133579

RESUMEN

BACKGROUND: Genome editing (GE) is a method that enables specific nucleotides in the genome of an individual to be changed. To date, use of GE in livestock has focussed on simple traits that are controlled by a few quantitative trait nucleotides (QTN) with large effects. The aim of this study was to evaluate the potential of GE to improve quantitative traits that are controlled by many QTN, referred to here as promotion of alleles by genome editing (PAGE). METHODS: Multiple scenarios were simulated to test alternative PAGE strategies for a quantitative trait. They differed in (i) the number of edits per sire (0 to 100), (ii) the number of edits per generation (0 to 500), and (iii) the extent of use of PAGE (i.e. editing all sires or only a proportion of them). The base line scenario involved selecting individuals on true breeding values (i.e., genomic selection only (GS only)-genomic selection with perfect accuracy) for several generations. Alternative scenarios complemented this base line scenario with PAGE (GS + PAGE). The effect of different PAGE strategies was quantified by comparing response to selection, changes in allele frequencies, the number of distinct QTN edited, the sum of absolute effects of the edited QTN per generation, and inbreeding. RESULTS: Response to selection after 20 generations was between 1.08 and 4.12 times higher with GS + PAGE than with GS only. Increases in response to selection were larger with more edits per sire and more sires edited. When the total resources for PAGE were limited, editing a few sires for many QTN resulted in greater response to selection and inbreeding compared to editing many sires for a few QTN. Between the scenarios GS only and GS + PAGE, there was little difference in the average change in QTN allele frequencies, but there was a major difference for the QTN with the largest effects. The sum of the effects of the edited QTN decreased across generations. CONCLUSIONS: This study showed that PAGE has great potential for application in livestock breeding programs, but inbreeding needs to be managed.


Asunto(s)
Ganado/genética , Sitios de Carácter Cuantitativo , Selección Artificial/genética , Animales , Frecuencia de los Genes , Variación Genética , Genoma , Modelos Genéticos , Selección Genética
11.
J Dairy Res ; 77(2): 137-43, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20030901

RESUMEN

Three models for the estimation of milk, fat and protein daily yield (DY) based on a.m. (AM) or p.m. (PM) milkings were compared. A total of 518 766 test-day records from 5078 dairy cattle farms obtained between March 2004 and April 2008 were analysed. The DY model was a linear model with DY as a dependent variable. In the PYR model and the DYR model, partial yield ratios (AM:DY and PM:DY) and daily yield ratios (DY:AM and DY:PM), respectively, were used as a dependent variable in the first step. In the second step, DY was estimated as a partial yield divided (PYR model) or multiplied (DYR model) by the estimated yield ratio from the first step. Models included the effect of partial yield (only in the DY model), milking interval, stage (month) of lactation and parity. Analysis of variance indicated that partial yield was the most important source of variation for the DY model whereas milking interval had the biggest effect in the PYR model and the DYR model. Differences in accuracy (correlation between the true and the estimated DY) between the models were negligible. On the other hand, models differed in the amount of bias (average error). The DYR model on average overestimated DY by 0.13 kg, 0.01 kg and 0.01 kg for milk, fat and protein, respectively. For the other two models the overall bias was almost zero. However, the DY model overestimated low and underestimated high DY owing to the well known regression property. The DYR model progressively overestimated high DY. These problems were not observed with the PYR model which seemed to be the best model. In this paper a relatively old topic was analysed and discussed from a new point of view, where the estimation of DY is based on modelling biologically more stable partial yield ratios rather than yield values from a.m. or p.m. milking.


Asunto(s)
Industria Lechera , Grasas/metabolismo , Lactancia/metabolismo , Proteínas de la Leche/metabolismo , Leche/metabolismo , Modelos Estadísticos , Animales , Bovinos , Femenino , Modelos Biológicos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...