Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 8358, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102143

RESUMEN

The spike (S) protein of SARS-CoV-2 is delivered to the virion assembly site in the ER-Golgi Intermediate Compartment (ERGIC) from both the ER and cis-Golgi in infected cells. However, the relevance and modulatory mechanism of this bidirectional trafficking are unclear. Here, using structure-function analyses, we show that S incorporation into virus-like particles (VLP) and VLP fusogenicity are determined by coatomer-dependent S delivery from the cis-Golgi and restricted by S-coatomer dissociation. Although S mimicry of the host coatomer-binding dibasic motif ensures retrograde trafficking to the ERGIC, avoidance of the host-like C-terminal acidic residue is critical for S-coatomer dissociation and therefore incorporation into virions or export for cell-cell fusion. Because this C-terminal residue is the key determinant of SARS-CoV-2 assembly and fusogenicity, our work provides a framework for the export of S protein encoded in genetic vaccines for surface display and immune activation.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/metabolismo , Aparato de Golgi/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
2.
Nat Struct Mol Biol ; 29(4): 348-356, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35332324

RESUMEN

Vertebrates use the mannose 6-phosphate (M6P)-recognition system to deliver lysosomal hydrolases to lysosomes. Key to this pathway is N-acetylglucosamine (GlcNAc)-1-phosphotransferase (PTase) that selectively adds GlcNAc-phosphate (P) to mannose residues of hydrolases. Human PTase is an α2ß2γ2 heterohexamer with a catalytic core and several peripheral domains that recognize and bind substrates. Here we report a cryo-EM structure of the catalytic core of human PTase and the identification of a hockey stick-like motif that controls activation of the enzyme. Movement of this motif out of the catalytic pocket is associated with a rearrangement of part of the peripheral domains that unblocks hydrolase glycan access to the catalytic site, thereby activating PTase. We propose that PTase fluctuates between inactive and active states in solution, and selective substrate binding of a lysosomal hydrolase through its protein-binding determinant to PTase locks the enzyme in the active state to permit glycan phosphorylation. This mechanism would help ensure that only N-linked glycans of lysosomal enzymes are phosphorylated.


Asunto(s)
Hidrolasas , Manosa , Humanos , Hidrolasas/metabolismo , Lisosomas/metabolismo , Manosa/metabolismo , Fosfatos/metabolismo , Fosforilación , Fosfotransferasas/metabolismo , Polisacáridos
3.
FEBS Lett ; 595(13): 1758-1767, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33991349

RESUMEN

The SARS-CoV-2 spike glycoprotein (spike) mediates viral entry by binding ACE2 receptors on host cell surfaces. Spike glycan processing and cleavage, which occur in the Golgi network, are important for fusion at the plasma membrane, promoting both virion infectivity and cell-to-cell viral spreading. We show that a KxHxx motif in the cytosolic tail of spike weakly binds the COPß' subunit of COPI coatomer, which facilitates some recycling of spike within the Golgi, while releasing the remainder to the cell surface. Although histidine (KxHxx) has been proposed to be equivalent to lysine within di-lysine endoplasmic reticulum (ER) retrieval sequences, we show that histidine-to-lysine substitution (KxKxx) retains spike at the ER and prevents glycan processing, protease cleavage, and transport to the plasma membrane.


Asunto(s)
Sustitución de Aminoácidos , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , Glicosilación , Aparato de Golgi , Células HEK293 , Células HeLa , Histidina/genética , Humanos , Lisina/genética , Dominios Proteicos , Proteolisis , Glicoproteína de la Espiga del Coronavirus/genética , Internalización del Virus
4.
FEBS Open Bio ; 11(2): 367-374, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33206455

RESUMEN

The Golgi-localized, gamma-ear containing, ADP-ribosylation factor-binding proteins (GGAs 1, 2, and 3) are multidomain proteins that bind mannose 6-phosphate receptors (MPRs) at the Golgi and play a role, along with adaptor protein complex 1 (AP-1), in the sorting of newly synthesized lysosomal hydrolases to the endolysosomal system. However, the relative importance of the two types of coat proteins in this process is still unclear. Here, we report that inactivation of all three GGA genes in HeLa cells decreased the sorting efficiency of cathepsin D from 97% to 73% relative to wild-type, with marked redistribution of the cation-independent MPR from peripheral punctae to the trans-Golgi network. In comparison, GNPTAB-/- HeLa cells with complete inactivation of the mannose 6-phosphate pathway sorted only 20% of the cathepsin D. We conclude that the residual sorting of cathepsin D in the GGA triple-knockout cells is mediated by AP-1.


Asunto(s)
Complejo 1 de Proteína Adaptadora/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Catepsina D/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Técnicas de Inactivación de Genes , Células HeLa , Humanos , Lisosomas/enzimología , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Red trans-Golgi/metabolismo
5.
Hum Mutat ; 41(7): 1321-1328, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32220096

RESUMEN

Transport of newly synthesized lysosomal enzymes to the lysosome requires tagging of these enzymes with the mannose 6-phosphate moiety by UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase (GlcNAc-1-phosphotransferase), encoded by two genes, GNPTAB and GNPTG. GNPTAB encodes the α and ß subunits, which are initially synthesized as a single precursor that is cleaved by Site-1 protease in the Golgi. Mutations in this gene cause the lysosomal storage disorders mucolipidosis II (MLII) and mucolipidosis III αß (MLIII αß). Two recent studies have reported the first patient mutations within the N-terminal transmembrane domain (TMD) of the α subunit of GlcNAc-1-phosphotransferase that cause either MLII or MLIII αß. Here, we demonstrate that two of the MLII missense mutations, c.80T>A (p.Val27Asp) and c.83T>A (p.Val28Asp), prevent the cotranslational insertion of the nascent GlcNAc-1-phosphotransferase polypeptide chain into the endoplasmic reticulum. The remaining four mutations, one of which is associated with MLII, c.100G>C (p.Ala34Pro), and the other three with MLIII αß, c.70T>G (p.Phe24Val), c.77G>A (p.Gly26Asp), and c.107A>C (p.Glu36Pro), impair retention of the catalytically active enzyme in the Golgi with concomitant mistargeting to endosomes/lysosomes. Our results uncover the basis for the disease phenotypes of these patient mutations and establish the N-terminal TMD of GlcNAc-1-phosphotransferase as an important determinant of Golgi localization.


Asunto(s)
Mutación Missense , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Retículo Endoplásmico , Aparato de Golgi , Células HEK293 , Células HeLa , Humanos , Mucolipidosis/genética , Fenotipo
6.
Nat Genet ; 51(9): 1308-1314, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31406347

RESUMEN

Pancreatic ductal adenocarcinoma is an aggressive cancer with limited treatment options1. Approximately 10% of cases exhibit familial predisposition, but causative genes are not known in most families2. We perform whole-genome sequence analysis in a family with multiple cases of pancreatic ductal adenocarcinoma and identify a germline truncating mutation in the member of the RAS oncogene family-like 3 (RABL3) gene. Heterozygous rabl3 mutant zebrafish show increased susceptibility to cancer formation. Transcriptomic and mass spectrometry approaches implicate RABL3 in RAS pathway regulation and identify an interaction with RAP1GDS1 (SmgGDS), a chaperone regulating prenylation of RAS GTPases3. Indeed, the truncated mutant RABL3 protein accelerates KRAS prenylation and requires RAS proteins to promote cell proliferation. Finally, evidence in patient cohorts with developmental disorders implicates germline RABL3 mutations in RASopathy syndromes. Our studies identify RABL3 mutations as a target for genetic testing in cancer families and uncover a mechanism for dysregulated RAS activity in development and cancer.


Asunto(s)
Carcinoma Ductal Pancreático/patología , Carcinoma/patología , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Neoplasias Pancreáticas/patología , Prenilación , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas de Unión al GTP rab/genética , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Aminoácidos , Animales , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proliferación Celular , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Linaje , Proteínas Proto-Oncogénicas p21(ras)/genética , Homología de Secuencia , Pez Cebra
7.
Biochemistry ; 57(29): 4289-4298, 2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-29940100

RESUMEN

Protein prenylation involves the attachment of a hydrophobic isoprenoid moiety to the C-terminus of proteins. Several small GTPases, including members of the Ras and Rho subfamilies, require prenylation for their normal and pathological functions. Recent work has suggested that SmgGDS proteins regulate the prenylation of small GTPases in vivo. Using RhoA as a representative small GTPase, we directly test this hypothesis using biochemical assays and present a mechanism describing the mode of prenylation regulation. SmgGDS-607 completely inhibits RhoA prenylation catalyzed by protein geranylgeranyltransferase I (GGTase-I) in an in vitro radiolabel incorporation assay. SmgGDS-607 inhibits prenylation by binding to and blocking access to the C-terminal tail of the small GTPase (substrate sequestration mechanism) rather than via inhibition of the prenyltransferase activity. The reactivity of GGTase-I with RhoA is unaffected by addition of nucleotides. In contrast, the affinity of SmgGDS-607 for RhoA varies with the nucleotide bound to RhoA; SmgGDS-607 has a higher affinity for RhoA-GDP compared to RhoA-GTP. Consequently, the prenylation blocking function of SmgGDS-607 is regulated by the bound nucleotide. This work provides mechanistic insight into a novel pathway for the regulation of small GTPase protein prenylation by SmgGDS-607 and demonstrates that peptides are a good mimic for full-length proteins when measuring GGTase-I activity.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Guanosina Trifosfato/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Guanosina Difosfato/metabolismo , Humanos , Unión Proteica , Prenilación de Proteína
9.
J Biol Chem ; 291(12): 6534-45, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26814130

RESUMEN

The small GTPase DiRas1 has tumor-suppressive activities, unlike the oncogenic properties more common to small GTPases such as K-Ras and RhoA. Although DiRas1 has been found to be a tumor suppressor in gliomas and esophageal squamous cell carcinomas, the mechanisms by which it inhibits malignant phenotypes have not been fully determined. In this study, we demonstrate that DiRas1 binds to SmgGDS, a protein that promotes the activation of several oncogenic GTPases. In silico docking studies predict that DiRas1 binds to SmgGDS in a manner similar to other small GTPases. SmgGDS is a guanine nucleotide exchange factor for RhoA, but we report here that SmgGDS does not mediate GDP/GTP exchange on DiRas1. Intriguingly, DiRas1 acts similarly to a dominant-negative small GTPase, binding to SmgGDS and inhibiting SmgGDS binding to other small GTPases, including K-Ras4B, RhoA, and Rap1A. DiRas1 is expressed in normal breast tissue, but its expression is decreased in most breast cancers, similar to its family member DiRas3 (ARHI). DiRas1 inhibits RhoA- and SmgGDS-mediated NF-κB transcriptional activity in HEK293T cells. We also report that DiRas1 suppresses basal NF-κB activation in breast cancer and glioblastoma cell lines. Taken together, our data support a model in which DiRas1 expression inhibits malignant features of cancers in part by nonproductively binding to SmgGDS and inhibiting the binding of other small GTPases to SmgGDS.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Secuencia de Aminoácidos , Neoplasias de la Mama/enzimología , Carcinoma Ductal de Mama/enzimología , GTP Fosfohidrolasas/química , Factores de Intercambio de Guanina Nucleótido/química , Guanosina Difosfato/química , Guanosina Trifosfato/química , Células HEK293 , Humanos , Células MCF-7 , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Supresoras de Tumor/química , Proteína de Unión al GTP rhoA
10.
Bioorg Med Chem Lett ; 26(4): 1333-6, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26803203

RESUMEN

Attempts to identify the prenyl-proteome of cells or changes in prenylation following drug treatment have used 'clickable' alkyne-modified analogs of the lipid substrates farnesyl- and geranylgeranyl-diphosphate (FPP and GGPP). We characterized the reactivity of four alkyne-containing analogs of FPP with purified protein farnesyltransferase and a small library of dansylated peptides using an in vitro continuous spectrofluorimetric assay. These analogs alter prenylation specificity and reactivity suggesting that in vivo results obtained using these FPP analogs should be interpreted cautiously.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Fosfatos de Poliisoprenilo/metabolismo , Sesquiterpenos/metabolismo , Alquinos/química , Química Clic , Cinética , Péptidos/química , Péptidos/metabolismo , Fosfatos de Poliisoprenilo/química , Prenilación de Proteína , Sesquiterpenos/química , Especificidad por Sustrato
11.
Elife ; 2: e01293, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24282236

RESUMEN

Large Ca transients cause massive endocytosis (MEND) in BHK fibroblasts by nonclassical mechanisms. We present evidence that MEND depends on mitochondrial permeability transition pore (PTP) openings, followed by coenzyme A (CoA) release, acyl CoA synthesis, and membrane protein palmitoylation. MEND is blocked by inhibiting mitochondrial Ca uptake or PTP openings, depleting fatty acids, blocking acyl CoA synthesis, metabolizing CoA, or inhibiting palmitoylation. It is triggered by depolarizing mitochondria or promoting PTP openings. After mitochondrial MEND blockade, MEND is restored by cytoplasmic acyl CoA or CoA. MEND is blocked by siRNA knockdown of the plasmalemmal acyl transferase, DHHC5. When acyl CoA is abundant, transient H2O2 oxidative stress or PKC activation initiates MEND, but the immediate presence of H2O2 prevents MEND. The PTP inhibitor, NIM811, significantly increases plasmalemma in normally growing cells. Thus, the MEND pathway may contribute to constitutive as well as pathological plasmalemma turnover in dependence on mitochondrial stress signaling. DOI: http://dx.doi.org/10.7554/eLife.01293.001.


Asunto(s)
Endocitosis , Mitocondrias/metabolismo , Ácido Palmítico/metabolismo , Acilcoenzima A/metabolismo , Animales , Células Cultivadas , Cricetinae , Fibroblastos/citología , Fibroblastos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
12.
Biochemistry ; 52(30): 5125-32, 2013 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-23837529

RESUMEN

The upsurge in drug-resistant tuberculosis (TB) is an emerging global problem. The increased expression of the enhanced intracellular survival (Eis) protein is responsible for the clinical resistance to aminoglycoside (AG) antibiotics of Mycobacterium tuberculosis . Eis from M. tuberculosis (Eis_Mtb) and M. smegmatis (Eis_Msm) function as acetyltransferases capable of acetylating multiple amines of many AGs; however, these Eis homologues differ in AG substrate preference and in the number of acetylated amine groups per AG. The AG binding cavity of Eis_Mtb is divided into two narrow channels, whereas Eis_Msm contains one large cavity. Five bulky residues lining one of the AG binding channels of Eis_Mtb, His119, Ile268, Trp289, Gln291, and Glu401, have significantly smaller counterparts in Eis_Msm, Thr119, Gly266, Ala287, Ala289, and Gly401, respectively. To identify the residue(s) responsible for AG binding in Eis_Mtb and for the functional differences from Eis_Msm, we have generated single, double, triple, quadruple, and quintuple mutants of these residues in Eis_Mtb by mutating them into their Eis_Msm counterparts, and we tested their acetylation activity with three structurally diverse AGs: kanamycin A (KAN), paromomyin (PAR), and apramycin (APR). We show that penultimate C-terminal residue Glu401 plays a critical role in the overall activity of Eis_Mtb. We also demonstrate that the identities of residues Ile268, Trp289, and Gln291 (in Eis_Mtb nomenclature) dictate the differences between the acetylation efficiencies of Eis_Mtb and Eis_Msm for KAN and PAR. Finally, we show that the mutation of Trp289 in Eis_Mtb into Ala plays a role in APR acetylation.


Asunto(s)
Acetiltransferasas/metabolismo , Aminoglicósidos/metabolismo , Antibióticos Antituberculosos/metabolismo , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/enzimología , Acetilación , Acetiltransferasas/química , Acetiltransferasas/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Aminoglicósidos/química , Aminoglicósidos/farmacología , Antibióticos Antituberculosos/química , Antibióticos Antituberculosos/farmacología , Antígenos Bacterianos/química , Antígenos Bacterianos/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Farmacorresistencia Bacteriana Múltiple , Kanamicina/química , Kanamicina/metabolismo , Kanamicina/farmacología , Cinética , Conformación Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium smegmatis/enzimología , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/metabolismo , Nebramicina/análogos & derivados , Nebramicina/química , Nebramicina/metabolismo , Nebramicina/farmacología , Paromomicina/química , Paromomicina/metabolismo , Paromomicina/farmacología , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Especificidad por Sustrato
13.
Biochem Soc Trans ; 41(1): 29-34, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23356254

RESUMEN

Protein S-palmitoylation is a reversible post-translational modification of proteins with fatty acids. In the last 5 years, improved proteomic methods have increased the number of proteins identified as substrates for palmitoylation from tens to hundreds. Palmitoylation regulates protein membrane interactions, activity, trafficking and stability and can be constitutive or regulated by signalling inputs. A family of PATs (protein acyltransferases) is responsible for modifying proteins with palmitate or other long-chain fatty acids on the cytoplasmic face of cellular membranes. PATs share a signature DHHC (Asp-His-His-Cys) cysteine-rich domain that is the catalytic centre of the enzyme. The biomedical importance of members of this family is underscored by their association with intellectual disability, Huntington's disease and cancer in humans, and raises the possibility of DHHC PATs as targets for therapeutic intervention. In the present paper, we discuss recent progress in understanding enzyme mechanism, regulation and substrate specificity.


Asunto(s)
Aciltransferasas/metabolismo , Aciltransferasas/química , Dominio Catalítico , Conformación Proteica , Proteómica , Transducción de Señal , Especificidad por Sustrato
14.
J Biol Chem ; 287(10): 7236-45, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22247542

RESUMEN

DHHC proteins catalyze the reversible S-acylation of proteins at cysteine residues, a modification important for regulating protein localization, stability, and activity. However, little is known about the kinetic mechanism of DHHC proteins. A high-performance liquid chromatography (HPLC), fluorescent peptide-based assay for protein S-acylation activity was developed to characterize mammalian DHHC2 and DHHC3. Time courses and substrate saturation curves allowed the determination of V(max) and K(m) values for both the peptide N-myristoylated-GCG and palmitoyl-coenzyme A. DHHC proteins acylate themselves upon incubation with palmitoyl-CoA, which is hypothesized to reflect a transient acyl enzyme transfer intermediate. Single turnover assays with DHHC2 and DHHC3 demonstrated that a radiolabeled acyl group on the enzyme transferred to the protein substrate, consistent with a two-step ping-pong mechanism. Enzyme autoacylation and acyltransfer to substrate displayed the same acyl-CoA specificities, further supporting a two-step mechanism. Interestingly, DHHC2 efficiently transferred acyl chains 14 carbons and longer, whereas DHHC3 activity was greatly reduced by acyl-CoAs with chain lengths longer than 16 carbons. The rate and extent of autoacylation of DHHC3, as well as the rate of acyl chain transfer to protein substrate, were reduced with stearoyl-CoA when compared with palmitoyl-CoA. This is the first observation of lipid substrate specificity among DHHC proteins and may account for the differential S-acylation of proteins observed in cells.


Asunto(s)
Acilcoenzima A/química , Aciltransferasas/química , Lipoilación/fisiología , Palmitoil Coenzima A/química , Proteínas Supresoras de Tumor/química , Acilcoenzima A/genética , Acilcoenzima A/metabolismo , Acilación/fisiología , Aciltransferasas/genética , Aciltransferasas/metabolismo , Cinética , Palmitoil Coenzima A/genética , Palmitoil Coenzima A/metabolismo , Especificidad por Sustrato/fisiología , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
15.
Mol Cell ; 41(2): 173-85, 2011 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-21255728

RESUMEN

A cycle of palmitoylation/depalmitoylation of H-Ras mediates bidirectional trafficking between the Golgi apparatus and the plasma membrane, but nothing is known about how this cycle is regulated. We show that the prolyl isomerase (PI) FKBP12 binds to H-Ras in a palmitoylation-dependent fashion and promotes depalmitoylation. A variety of inhibitors of the PI activity of FKBP12, including FK506, rapamycin, and cycloheximide, increase steady-state palmitoylation. FK506 inhibits retrograde trafficking of H-Ras from the plasma membrane to the Golgi in a proline 179-dependent fashion, augments early GTP loading of Ras in response to growth factors, and promotes H-Ras-dependent neurite outgrowth from PC12 cells. These data demonstrate that FKBP12 regulates H-Ras trafficking by promoting depalmitoylation through cis-trans isomerization of a peptidyl-prolyl bond in proximity to the palmitoylated cysteines.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteína 1A de Unión a Tacrolimus/fisiología , Acilación , Animales , Lipoilación , Células PC12 , Transporte de Proteínas , Proteínas Proto-Oncogénicas p21(ras)/química , Ratas , Transducción de Señal , Proteína 1A de Unión a Tacrolimus/metabolismo
16.
J Lipid Res ; 50(2): 233-42, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18827284

RESUMEN

Pharmacologic approaches to studying palmitoylation are limited by the lack of specific inhibitors. Recently, screens have revealed five chemical classes of small molecules that inhibit cellular processes associated with palmitoylation (Ducker, C. E., L. K. Griffel, R. A. Smith, S. N. Keller, Y. Zhuang, Z. Xia, J. D. Diller, and C. D. Smith. 2006. Discovery and characterization of inhibitors of human palmitoyl acyltransferases. Mol. Cancer Ther. 5: 1647-1659). Compounds that selectively inhibited palmitoylation of N-myristoylated vs. farnesylated peptides were identified in assays of palmitoyltransferase activity using cell membranes. Palmitoylation is catalyzed by a family of enzymes that share a conserved DHHC (Asp-His-His-Cys) cysteine-rich domain. In this study, we evaluated the ability of these inhibitors to reduce DHHC-mediated palmitoylation using purified enzymes and protein substrates. Human DHHC2 and yeast Pfa3 were assayed with their respective N-myristoylated substrates, Lck and Vac8. Human DHHC9/GCP16 and yeast Erf2/Erf4 were tested using farnesylated Ras proteins. Surprisingly, all four enzymes showed a similar profile of inhibition. Only one of the novel compounds, 2-(2-hydroxy-5-nitro-benzylidene)-benzo[b]thiophen-3-one [Compound V (CV)], and 2-bromopalmitate (2BP) inhibited the palmitoyltransferase activity of all DHHC proteins tested. Hence, the reported potency and selectivity of these compounds were not recapitulated with purified enzymes and their cognate lipidated substrates. Further characterization revealed both compounds blocked DHHC enzyme autoacylation and displayed slow, time-dependent inhibition but differed with respect to reversibility. Inhibition of palmitoyltransferase activity by CV was reversible, whereas 2BP inhibition was irreversible.


Asunto(s)
Aciltransferasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Nitrofenoles/farmacología , Palmitatos/farmacología , Tiofenos/farmacología , Aciltransferasas/genética , Aciltransferasas/metabolismo , Secuencia de Aminoácidos , Animales , Células Cultivadas , Humanos , Lipoilación , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Ratones , Datos de Secuencia Molecular , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA