Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 121(10): 3283-3296, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38973176

RESUMEN

Biosensors are valuable tools in accelerating the test phase of the design-build-test-learn cycle of cell factory development, as well as in bioprocess monitoring and control. G protein-coupled receptor (GPCR)-based biosensors enable cells to sense a wide array of molecules and environmental conditions in a specific manner. Due to the extracellular nature of their sensing, GPCR-based biosensors require compartmentalization of distinct genotypes when screening production levels of a strain library to ensure that detected levels originate exclusively from the strain under assessment. Here, we explore the integration of production and sensing modalities into a single Saccharomyces cerevisiae strain and compartmentalization using three different methods: (1) cultivation in microtiter plates, (2) spatial separation on agar plates, and (3) encapsulation in water-in-oil-in-water double emulsion droplets, combined with analysis and sorting via a fluorescence-activated cell sorting machine. Employing tryptamine and serotonin as proof-of-concept target molecules, we optimize biosensing conditions and demonstrate the ability of the autocrine screening method to enrich for high producers, showing the enrichment of a serotonin-producing strain over a nonproducing strain. These findings illustrate a workflow that can be adapted to screening for a wide range of complex chemistry at high throughput using commercially available microfluidic systems.


Asunto(s)
Técnicas Biosensibles , Ensayos Analíticos de Alto Rendimiento , Receptores Acoplados a Proteínas G , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Técnicas Biosensibles/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Serotonina/metabolismo , Serotonina/análisis , Comunicación Autocrina
3.
Biotechnol Prog ; : e3482, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38757558

RESUMEN

Recombinant protein expression on an industrial scale traditionally utilizes one of two microbial workhorses: Escherichia coli or Saccharomyces cerevisiae. Additionally, random protein engineering of enzymes and proteins aimed for expression in S. cerevisiae are often mutagenized and pre-screened in E. coli before expression in yeast. This introduces artificial bottlenecks as the bacterial expression vector needs to be substituted for a yeast expression vector via sub-cloning, and the new library re-evaluated before a final screening in yeast. Here, we put forward a protein expression and engineering strategy that involves the use of a dual-host shuttle vector (pYB-Dual) designed with both a strong inducible yeast promoter (pGAL1), and a strong inducible bacterial promoter (pT7-RNAP), which allows for inducible protein expression in both species. Additionally, we demonstrate that by transforming the pYB-Dual vector into the E. coli strain Rosetta 2, which has elevated levels of 7 rare tRNAs, we can achieve high-level protein expression in both yeast and bacteria, even when using a mNeonGreen gene codon optimized for yeast. This dual expression vector is expected to remove bottlenecks during protein engineering of commercially important enzymes destined for high-titer expression in yeast.

4.
Trends Biotechnol ; 42(10): 1258-1272, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38677901

RESUMEN

Detailed molecular understanding of the human organism is essential to develop effective therapies. Saccharomyces cerevisiae has been used extensively for acquiring insights into important aspects of human health, such as studying genetics and cell-cell communication, elucidating protein-protein interaction (PPI) networks, and investigating human G protein-coupled receptor (hGPCR) signaling. We highlight recent advances and opportunities of yeast-based technologies for cost-efficient chemical library screening on hGPCRs, accelerated deciphering of PPI networks with mating-based screening and selection, and accurate cell-cell communication with human immune cells. Overall, yeast-based technologies constitute an important platform to support basic understanding and innovative applications towards improving human health.


Asunto(s)
Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Mapeo de Interacción de Proteínas/métodos
5.
ACS Synth Biol ; 13(5): 1498-1512, 2024 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-38635307

RESUMEN

Monoterpene indole alkaloids (MIAs) make up a highly bioactive class of metabolites produced by a range of tropical and subtropical plants. The corynanthe-type MIAs are a stereochemically complex subclass with therapeutic potential against a large number of indications including cancer, psychotic disorders, and erectile dysfunction. Here, we report yeast-based cell factories capable of de novo production of corynanthe-type MIAs rauwolscine, yohimbine, tetrahydroalstonine, and corynanthine. From this, we demonstrate regioselective biosynthesis of 4 fluorinated derivatives of these compounds and de novo biosynthesis of 7-chlororauwolscine by coexpression of a halogenase with the biosynthetic pathway. Finally, we capitalize on the ability of these cell factories to produce derivatives of these bioactive scaffolds to establish a proof-of-principle drug discovery pipeline in which the corynanthe-type MIAs are screened for bioactivity on human drug targets, expressed in yeast. In doing so, we identify antagonistic and agonistic behavior against the human adrenergic G protein-coupled receptors ADRA2A and ADRA2B, and the serotonergic receptor 5HT4b, respectively. This study thus demonstrates a proto-drug discovery pipeline for bioactive plant-inspired small molecules based on one-pot biocatalysis of natural and new-to-nature corynanthe-type MIAs in yeast.


Asunto(s)
Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Humanos , Vías Biosintéticas , Yohimbina/metabolismo , Yohimbina/farmacología , Alcaloides de Triptamina Secologanina/metabolismo , Alcaloides Indólicos/metabolismo , Descubrimiento de Drogas/métodos
6.
BMC Emerg Med ; 24(1): 59, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609897

RESUMEN

BACKGROUND: Accidental hypothermia is common in all trauma patients and contributes to the lethal diamond, increasing both morbidity and mortality. In hypotensive shock, fluid resuscitation is recommended using fluids with a temperature of 37-42°, as fluid temperature can decrease the patient's body temperature. In Sweden, virtually all prehospital services use preheated fluids. The aim of the present study was to investigate how the temperature of preheated infusion fluids is affected by the ambient temperatures and flow rates relevant for prehospital emergency care. METHODS: In this experimental simulation study, temperature changes in crystalloids preheated to 39 °C were evaluated. The fluid temperature changes were measured both in the infusion bag and at the patient end of the infusion system. Measurements were conducted in conditions relevant to prehospital emergency care, with ambient temperatures varying between - 4 and 28 °C and flow rates of 1000 ml/h and 6000 ml/h, through an uninsulated infusion set at a length of 175 cm. RESULTS: The flow rate and ambient temperature affected the temperature in the infusion fluid both in the infusion bag and at the patient end of the system. A lower ambient temperature and lower flow rate were both associated with a greater temperature loss in the infusion fluid. CONCLUSION: This study shows that both a high infusion rate and a high ambient temperature are needed if an infusion fluid preheated to 39 °C is to remain above 37 °C when it reaches the patient using a 175-cm-long uninsulated infusion set. It is apparent that the lower the ambient temperature, the higher the flow rate needs to be to limit temperature loss of the fluid.


Asunto(s)
Servicios Médicos de Urgencia , Hipotermia , Humanos , Temperatura , Hipotermia/terapia , Fluidoterapia , Soluciones Cristaloides
7.
Molecules ; 28(9)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37175160

RESUMEN

Metal hydrides are an interesting group of chemical compounds, able to store hydrogen in a reversible, compact and safe manner. Among them, A2B7-type intermetallic alloys based on La-Mg-Ni have attracted particular attention due to their high electrochemical hydrogen storage capacity (∼400 mAh/g) and extended cycle life. However, the presence of Mg makes their synthesis via conventional metallurgical routes challenging. Replacing Mg with Y is a viable approach. Herein, we present a systematic study for a series of compounds with a nominal composition of La2-xYxNi6.50Mn0.33Al0.17, x = 0.33, 0.67, 1.00, 1.33, 1.67, focusing on the relationship between the material structural properties and hydrogen sorption performances. The results show that while the hydrogen-induced phase amorphization occurs in the Y-poor samples (x < 1.00) already during the first hydrogen absorption, a higher Y content helps to maintain the material crystallinity during the hydrogenation cycles and increases its H-storage capacity (1.37 wt.% for x = 1.00 vs. 1.60 wt.% for x = 1.67 at 50 °C). Thermal conductivity experiments on the studied compositions indicate the importance of thermal transfer between powder individual particles and/or a measuring instrument.

8.
Biotechnol Notes ; 4: 90-99, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-39416924

RESUMEN

Insect olfaction directly impacts insect behavior and thus is an important consideration in the development of smart farming tools and in integrated pest management strategies. Insect olfactory receptors (ORs) have been traditionally studied using Drosophila empty neuron systems or with expression and functionalization in HEK293 cells or Xenopus laevis oocytes. Recently, the yeast Saccharomyces cerevisiae (S. cerevisiae) has emerged as a promising chassis for the functional expression of heterologous seven transmembrane receptors. S. cerevisiae provides a platform for the cheap and high throughput study of these receptors and potential deorphanization. In this study, we explore the foundations of a scalable yeast-based platform for the functional expression of insect olfactory receptors by employing a genetically encoded calcium sensor for quantitative evaluation of fluorescence and optimized experimental parameters for enhanced functionality. While the co-receptor of insect olfactory receptors remains non-functional in our yeast-based system, we thoroughly evaluated various experimental variables and identified future research directions for establishing an OR platform in S. cerevisiae.

9.
Nat Commun ; 13(1): 6201, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36261657

RESUMEN

G protein-coupled receptors (GPCRs) enable cells to sense environmental cues and are indispensable for coordinating vital processes including quorum sensing, proliferation, and sexual reproduction. GPCRs comprise the largest class of cell surface receptors in eukaryotes, and for more than three decades the pheromone-induced mating pathway in baker's yeast Saccharomyces cerevisiae has served as a model for studying heterologous GPCRs (hGPCRs). Here we report transcriptome profiles following mating pathway activation in native and hGPCR-signaling yeast and use a model-guided approach to correlate gene expression to morphological changes. From this we demonstrate mating between haploid cells armed with hGPCRs and endogenous biosynthesis of their cognate ligands. Furthermore, we devise a ligand-free screening strategy for hGPCR compatibility with the yeast mating pathway and enable hGPCR-signaling in the probiotic yeast Saccharomyces boulardii. Combined, our findings enable new means to study mating, hGPCR-signaling, and cell-cell communication in a model eukaryote and yeast probiotics.


Asunto(s)
Probióticos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Reproducción/genética , Receptores Acoplados a Proteínas G/metabolismo , Feromonas/metabolismo , Receptores de Superficie Celular/metabolismo , Diferenciación Celular , Comunicación Celular , Ligandos
10.
Bio Protoc ; 12(5): e4346, 2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35592598

RESUMEN

Directed evolution is a powerful approach to obtain genetically-encoded sought-for traits. Compared to the prolonged adaptation regimes to mutations occurring under natural selection, directed evolution unlocks rapid screening and selection of mutants with improved traits from vast mutated sequence spaces. Many systems have been developed to search variant landscapes based on ex vivo or in vivo mutagenesis, to identify and select new-to-nature and optimized properties in biomolecules. Yet, the majority of such systems rely on tedious iterations of library preparation, propagation, and selection steps. Furthermore, among the relatively few in vivo directed evolution systems developed to mitigate handling of repetitive ex vivo steps, directed evolution of DNA is the standard approach. Here, we present the protocol for designing the transfer of genetic information from evolving RNA donors to DNA in baker's yeast, using CRISPR- and RNA-assisted in vivo directed evolution (CRAIDE). We use mutant T7 RNA polymerase to introduce mutations in RNA donors, while incorporation into DNA is directed by CRISPR/Cas9. As such, CRAIDE offers an opportunity to study fundamental questions, such as RNA's contribution to the evolution of DNA-based life on Earth. Graphic abstract: CRISPR- and RNA-assisted in vivo directed evolution (CRAIDE).

11.
ACS Sens ; 7(5): 1323-1335, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35452231

RESUMEN

Serotonin is a key neurotransmitter involved in numerous physiological processes and serves as an important precursor for manufacturing bioactive indoleamines and alkaloids used in the treatment of human pathologies. In humans, serotonin sensing and signaling can occur by 12 G protein-coupled receptors (GPCRs) coupled to Gα proteins. In yeast, human serotonin GPCRs coupled to Gα proteins have previously been shown to function as whole-cell biosensors of serotonin. However, systematic characterization of serotonin biosensing modalities between variant serotonin GPCRs and application thereof for high-resolution serotonin quantification is still awaiting. To systematically assess GPCR signaling in response to serotonin, we characterized reporter gene expression at two different pHs of a 144-sized library encoding all 12 human serotonin GPCRs in combination with 12 different Gα proteins engineered in yeast. From this screen, we observed changes in the biosensor sensitivities of >4 orders of magnitude. Furthermore, adopting optimal biosensing designs and pH conditions enabled high-resolution high-performance liquid chromatography-validated sensing of serotonin produced in yeast. Lastly, we used the yeast platform to characterize 19 serotonin GPCR polymorphisms found in human populations. While major differences in signaling were observed among the individual polymorphisms when studied in yeast, a cross-comparison of selected variants in mammalian cells showed both similar and disparate results. Taken together, our study highlights serotonin biosensing modalities of relevance to both biotechnological and potential human health applications.


Asunto(s)
Técnicas Biosensibles , Receptores Acoplados a Proteínas G , Saccharomyces cerevisiae , Serotonina , Técnicas Biosensibles/métodos , Humanos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Serotonina/análisis , Transducción de Señal
12.
Synth Syst Biotechnol ; 7(2): 657-663, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35224233

RESUMEN

The synthetic biology toolkit for baker's yeast, Saccharomyces cerevisiae, includes extensive genome engineering toolkits and parts repositories. However, with the increasing complexity of engineering tasks and versatile applications of this model eukaryote, there is a continued interest to expand and diversify the rational engineering capabilities in this chassis by FAIR (findable, accessible, interoperable, and reproducible) compliance. In this study, we designed and characterised 41 synthetic guide RNA sequences to expand the CRISPR-based genome engineering capabilities for easy and efficient replacement of genomically encoded elements. Moreover, we characterize in high temporal resolution 20 native promoters and 18 terminators using fluorescein and LUDOX CL-X as references for GFP expression and OD600 measurements, respectively. Additionally, all data and reported analysis is provided in a publicly accessible jupyter notebook providing a tool for researchers with low-coding skills to further explore the generated data as well as a template for researchers to write their own scripts. We expect the data, parts, and databases associated with this study to support a FAIR-compliant resource for further advancing the engineering of yeasts.

13.
Front Digit Health ; 3: 724714, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34713193

RESUMEN

Introduction: By means of adding more sensor technology, modern hearing aids (HAs) strive to become better, more personalized, and self-adaptive devices that can handle environmental changes and cope with the day-to-day fitness of the users. The latest HA technology available in the market already combines sound analysis with motion activity classification based on accelerometers to adjust settings. While there is a lot of research in activity tracking using accelerometers in sports applications and consumer electronics, there is not yet much in hearing research. Objective: This study investigates the feasibility of activity tracking with ear-level accelerometers and how it compares to waist-mounted accelerometers, which is a more common measurement location. Method: The activity classification methods in this study are based on supervised learning. The experimental set up consisted of 21 subjects, equipped with two XSens MTw Awinda at ear-level and one at waist-level, performing nine different activities. Results: The highest accuracy on our experimental data as obtained with the combination of Bagging and Classification tree techniques. The total accuracy over all activities and users was 84% (ear-level), 90% (waist-level), and 91% (ear-level + waist-level). Most prominently, the classes, namely, standing, jogging, laying (on one side), laying (face-down), and walking all have an accuracy of above 90%. Furthermore, estimated ear-level step-detection accuracy was 95% in walking and 90% in jogging. Conclusion: It is demonstrated that several activities can be classified, using ear-level accelerometers, with an accuracy that is on par with waist-level. It is indicated that step-detection accuracy is comparable to a high-performance wrist device. These findings are encouraging for the development of activity applications in hearing healthcare.

14.
Nucleic Acids Res ; 49(15): e88, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34107026

RESUMEN

Laboratory evolution is a powerful approach to search for genetic adaptations to new or improved phenotypes, yet either relies on labour-intensive human-guided iterative rounds of mutagenesis and selection, or prolonged adaptation regimes based on naturally evolving cell populations. Here we present CRISPR- and RNA-assisted in vivo directed evolution (CRAIDE) of genomic loci using evolving chimeric donor gRNAs continuously delivered from an error-prone T7 RNA polymerase, and directly introduced as RNA repair donors into genomic targets under either Cas9 or dCas9 guidance. We validate CRAIDE by evolving novel functional variants of an auxotrophic marker gene, and by conferring resistance to a toxic amino acid analogue in baker's yeast Saccharomyces cerevisiae with a mutation rate >3,000-fold higher compared to spontaneous native rate, thus enabling the first demonstrations of in vivo delivery and information transfer from long evolving RNA donor templates into genomic context without the use of in vitro supplied and pre-programmed repair donors.


Asunto(s)
Evolución Molecular Dirigida , ARN Guía de Kinetoplastida/genética , ARN Polimerasa Dependiente del ARN/genética , Saccharomyces cerevisiae/genética , Sistemas CRISPR-Cas/genética , Genoma Fúngico/genética , Humanos , Mutagénesis/genética , Mutación/genética , Selección Genética/genética
15.
Microb Biotechnol ; 14(6): 2617-2626, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33645919

RESUMEN

Directed evolution is a powerful method to optimize proteins and metabolic reactions towards user-defined goals. It usually involves subjecting genes or pathways to iterative rounds of mutagenesis, selection and amplification. While powerful, systematic searches through large sequence-spaces is a labour-intensive task, and can be further limited by a priori knowledge about the optimal initial search space, and/or limits in terms of screening throughput. Here, we demonstrate an integrated directed evolution workflow for metabolic pathway enzymes that continuously generate enzyme variants using the recently developed orthogonal replication system, OrthoRep and screens for optimal performance in high-throughput using a transcription factor-based biosensor. We demonstrate the strengths of this workflow by evolving a rate-limiting enzymatic reaction of the biosynthetic pathway for cis,cis-muconic acid (CCM), a precursor used for bioplastic and coatings, in Saccharomyces cerevisiae. After two weeks of simply iterating between passaging of cells to generate variant enzymes via OrthoRep and high-throughput sorting of best-performing variants using a transcription factor-based biosensor for CCM, we ultimately identified variant enzymes improving CCM titers > 13-fold compared with reference enzymes. Taken together, the combination of synthetic biology tools as adopted in this study is an efficient approach to debottleneck repetitive workflows associated with directed evolution of metabolic enzymes.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Ácido Sórbico/análogos & derivados , Biología Sintética
16.
Methods Mol Biol ; 1671: 185-201, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29170960

RESUMEN

Genome integration is a vital step for implementing large biochemical pathways to build a stable microbial cell factory. Although traditional strain construction strategies are well established for the model organism Saccharomyces cerevisiae, recent advances in CRISPR/Cas9-mediated genome engineering allow much higher throughput and robustness in terms of strain construction. In this chapter, we describe CasEMBLR, a highly efficient and marker-free genome engineering method for one-step integration of in vivo assembled expression cassettes in multiple genomic sites simultaneously. CasEMBLR capitalizes on the CRISPR/Cas9 technology to generate double-strand breaks in genomic loci, thus prompting native homologous recombination (HR) machinery to integrate exogenously derived homology templates. As proof-of-principle for microbial cell factory development, CasEMBLR was used for one-step assembly and marker-free integration of the carotenoid pathway from 15 exogenously supplied DNA parts into three targeted genomic loci. As a second proof-of-principle, a total of ten DNA parts were assembled and integrated in two genomic loci to construct a tyrosine production strain, and at the same time knocking out two genes. This new method complements and improves the field of genome engineering in S. cerevisiae by providing a more flexible platform for rapid and precise strain building.


Asunto(s)
Genómica/métodos , Ingeniería Metabólica , Redes y Vías Metabólicas , Sistemas CRISPR-Cas , Plásmidos/genética , ARN Guía de Kinetoplastida , Saccharomyces cerevisiae/metabolismo
17.
Microb Cell Fact ; 16(1): 46, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-28298224

RESUMEN

BACKGROUND: Transcriptional reprogramming is a fundamental process of living cells in order to adapt to environmental and endogenous cues. In order to allow flexible and timely control over gene expression without the interference of native gene expression machinery, a large number of studies have focused on developing synthetic biology tools for orthogonal control of transcription. Most recently, the nuclease-deficient Cas9 (dCas9) has emerged as a flexible tool for controlling activation and repression of target genes, by the simple RNA-guided positioning of dCas9 in the vicinity of the target gene transcription start site. RESULTS: In this study we compared two different systems of dCas9-mediated transcriptional reprogramming, and applied them to genes controlling two biosynthetic pathways for biobased production of isoprenoids and triacylglycerols (TAGs) in baker's yeast Saccharomyces cerevisiae. By testing 101 guide-RNA (gRNA) structures on a total of 14 different yeast promoters, we identified the best-performing combinations based on reporter assays. Though a larger number of gRNA-promoter combinations do not perturb gene expression, some gRNAs support expression perturbations up to ~threefold. The best-performing gRNAs were used for single and multiplex reprogramming strategies for redirecting flux related to isoprenoid production and optimization of TAG profiles. From these studies, we identified both constitutive and inducible multiplex reprogramming strategies enabling significant changes in isoprenoid production and increases in TAG. CONCLUSION: Taken together, we show similar performance for a constitutive and an inducible dCas9 approach, and identify multiplex gRNA designs that can significantly perturb isoprenoid production and TAG profiles in yeast without editing the genomic context of the target genes. We also identify a large number of gRNA positions in 14 native yeast target pomoters that do not affect expression, suggesting the need for further optimization of gRNA design tools and dCas9 engineering.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Endodesoxirribonucleasas/metabolismo , ARN Guía de Kinetoplastida/genética , Saccharomyces cerevisiae/genética , Transcripción Genética , Vías Biosintéticas/genética , Proteínas Asociadas a CRISPR/genética , Endodesoxirribonucleasas/genética , Regiones Promotoras Genéticas , Biología Sintética/métodos , Terpenos/metabolismo , Triglicéridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...