Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Genes Immun ; 24(2): 71-80, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36792680

RESUMEN

Ulcerative Colitis (UC) is an inflammatory disease characterized by colonic mucosal lesions associated with an increased risk of carcinogenesis. UC pathogenesis involves environmental and genetic factors. Genetic studies have indicated the association of gene variants coding for the divalent metal ion transporter SLC11A1 protein (formerly NRAMP1) with UC susceptibility in several animal species. Two mouse lines were genetically selected for high (AIRmax) or low (AIRmin) acute inflammatory responses (AIR). AIRmax is susceptible, and AIRmin is resistant to DSS-induced colitis and colon carcinogenesis. Furthermore, AIRmin mice present polymorphism of the Slc11a1 gene. Here we investigated the possible modulating effect of the Slc11a1 R and S variants in DSS-induced colitis by using AIRmin mice homozygous for Slc11a1 R (AIRminRR) or S (AIRminSS) alleles. We evaluated UC by the disease activity index (DAI), considering weight loss, diarrhea, blood in the anus or feces, cytokines, histopathology, and cell populations in the distal colon epithelium. AIRminSS mice have become susceptible to DSS effects, with higher DAI, IL6, G-CSF, and MCP-1 production and morphological and colon histopathological alterations than AIRminRR mice. The results point to a role of the Slc11a1 S allele in DSS colitis induction in the genetic background of AIRmin mice.


Asunto(s)
Colitis Ulcerosa , Colitis , Animales , Ratones , Carcinogénesis , Colitis/inducido químicamente , Colitis/genética , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/genética , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Inflamación/genética , Ratones Endogámicos C57BL , Polimorfismo Genético
3.
Front Immunol ; 13: 899569, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35799794

RESUMEN

We identified Pycard and BC017158 genes as putative effectors of the Quantitative Trait locus (QTL) that we mapped at distal chromosome 7 named Irm1 for Inflammatory response modulator 1, controlling acute inflammatory response (AIR) and the production of IL-1ß, dependent on the activation of the NLRP3 inflammasome. We obtained the mapping through genome-wide linkage analysis of Single Nucleotide Polymorphisms (SNPs) in a cross between High (AIRmax) and Low (AIRmin) responder mouse lines that we produced by several generations of bidirectional selection for Acute Inflammatory Response. A highly significant linkage signal (LOD score peak of 72) for ex vivo IL-1ß production limited a 4 Mbp interval to chromosome 7. Sequencing of the locus region revealed 14 SNPs between "High" and "Low" responders that narrowed the locus to a 420 Kb interval. Variants were detected in non-coding regions of Itgam, Rgs10 and BC017158 genes and at the first exon of Pycard gene, resulting in an E19K substitution in the protein ASC (apoptosis associated speck-like protein containing a CARD) an adaptor molecule in the inflammasome complex. Silencing of BC017158 inhibited IL1-ß production by stimulated macrophages and the E19K ASC mutation carried by AIRmin mice impaired the ex vivo IL-1ß response and the formation of ASC specks in stimulated cells. IL-1ß and ASC specks play major roles in inflammatory reactions and in inflammation-related diseases. Our results delineate a novel genetic factor and a molecular mechanism affecting the acute inflammatory response.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD , Inflamasomas , Animales , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Adaptadoras de Señalización CARD/metabolismo , Ligamiento Genético , Inflamasomas/genética , Inflamasomas/metabolismo , Inflamación/genética , Inflamación/metabolismo , Ratones , Sitios de Carácter Cuantitativo
4.
Cells ; 11(2)2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35053363

RESUMEN

Increased collagen-derived advanced glycation end-products (AGEs) are consistently related to painful diseases, including osteoarthritis, diabetic neuropathy, and neurodegenerative disorders. We have recently developed a model combining a two-dimensional glycated extracellular matrix (ECM-GC) and primary dorsal root ganglion (DRG) that mimicked a pro-nociceptive microenvironment. However, culturing primary cells is still a challenge for large-scale screening studies. Here, we characterized a new model using ECM-GC as a stimulus for human sensory-like neurons differentiated from SH-SY5Y cell lines to screen for analgesic compounds. First, we confirmed that the differentiation process induces the expression of neuron markers (MAP2, RBFOX3 (NeuN), and TUBB3 (ß-III tubulin), as well as sensory neuron markers critical for pain sensation (TRPV1, SCN9A (Nav1.7), SCN10A (Nav1.8), and SCN11A (Nav1.9). Next, we showed that ECM-GC increased c-Fos expression in human sensory-like neurons, which is suggestive of neuronal activation. In addition, ECM-GC upregulated the expression of critical genes involved in pain, including SCN9A and TACR1. Of interest, ECM-GC induced substance P release, a neuropeptide widely involved in neuroinflammation and pain. Finally, morphine, the prototype opiate, decreased ECM-GC-induced substance P release. Together, our results suggest that we established a functional model that can be useful as a platform for screening candidates for the management of painful conditions.


Asunto(s)
Analgésicos/análisis , Analgésicos/farmacología , Colágeno/farmacología , Evaluación Preclínica de Medicamentos , Modelos Biológicos , Células Receptoras Sensoriales/citología , Animales , Antígenos de Neoplasias/metabolismo , Biomarcadores/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Matriz Extracelular/metabolismo , Galectina 3/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Glicosilación/efectos de los fármacos , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/genética , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Neuritas/efectos de los fármacos , Neuritas/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Receptores de Neuroquinina-1/genética , Receptores de Neuroquinina-1/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Sustancia P/metabolismo , betaendorfina/metabolismo
5.
Genes Immun ; 23(1): 23-32, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34966170

RESUMEN

Two non-inbred mouse lines, phenotypically selected for maximal (AIRmin) and minimal (AIRmax) acute inflammatory response, show differential susceptibility/resistance to the development of several chemically-induced tumor types. An intercross pedigree of these mice was generated and treated with the chemical carcinogen dimethylhydrazine, which induces lung and intestinal tumors. Genome wide high-density genotyping with the Restriction Site-Associated DNA genotyping (2B-RAD) technique was used to map genetic loci modulating individual genetic susceptibility to both lung and intestinal cancer. Our results evidence new common quantitative trait loci (QTL) for those phenotypes and provide an improved understanding of the relationship between genomic variation and individual genetic predisposition to tumorigenesis in different organs.


Asunto(s)
Neoplasias del Colon , Sitios de Carácter Cuantitativo , Animales , Neoplasias del Colon/inducido químicamente , Neoplasias del Colon/genética , Predisposición Genética a la Enfermedad , Pulmón , Ratones , Ratones Endogámicos
6.
Front Immunol ; 12: 779473, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35185861

RESUMEN

Bothrops jararaca venom (BjV) can induce mast cell degranulation. In order to investigate the role of mast cells and the interference of the host genetic background in the inflammation induced by BjV, we have used mouse strains selected for maximal (AIRmax) or minimal (AIRmin) acute inflammatory response (AIR). Mice were pretreated with an inhibitor of mast cell degranulation, cromolyn (CROM), and injected in footpads or intraperitoneally (i.p.) with BjV. Pain was measured with von Frey hairs, cell migration in the peritoneum by flow cytometry, and reactive oxygen species (ROS) production by chemiluminescence assays. The nociceptive response to BjV was higher in AIRmax than AIRmin mice; however, this difference was abolished by pretreatment with CROM. BjV induced peritoneal neutrophil (CD11b+ GR-1+) infiltration and ROS secretion in AIRmax mice only, which were partially inhibited by CROM. Our findings evidence a role for mast cells in pain, neutrophil migration, and ROS production triggered by BjV in AIRmax mice that are more susceptible to the action of BjV.


Asunto(s)
Bothrops , Venenos de Crotálidos , Animales , Movimiento Celular , Venenos de Crotálidos/efectos adversos , Inflamación/inducido químicamente , Mastocitos , Ratones , Dolor , Especies Reactivas de Oxígeno
7.
PLoS Negl Trop Dis ; 14(6): e0008379, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32479494

RESUMEN

Few studies have addressed gene expression of hemostasis-related factors during acute thrombo-hemorrhagic diseases. Bites by the lanced-headed viper Bothrops jaracaca induce rapid hemostatic disturbances in victims, leading to systemic bleedings, thrombocytopenia and consumption coagulopathy. Although circulating levels of coagulation factors recover rapidly after administration of specific antivenom therapy, it is unclear if B. jararaca venom (BjV) upregulates the mRNA synthesis of hepatic hemostasis-related factors, or if the recovery occurs under basal conditions after the neutralization of venom components by antivenom. Thus, we aimed to investigate if BjV regulates gene expression of important hemostasis-related factors synthetized by the liver. On that account, Swiss mice were injected with saline or BjV (1.6 mg/kg b.w, s.c.), and after 3, 6 and 24 h blood samples and liver fragments were collected to analyze mRNA expression by real-time qPCR. Increased gene expression of fibrinogen chains, haptoglobin and STAT3 was observed during envenomation, particularly at 3 and 6 h. At 24h, mRNA levels of F10 were raised, while those of Serpinc1, Proc and Adamts13 were diminished. Surprisingly, F3 mRNA levels were steadily decreased at 3 h. Gene expression of Thpo, F7, F5 Tfpi, Mug1 was unaltered. mRNA levels of Vwf, P4hb, F8, F2, Plg, and Serpinf2 were minimally altered, but showed important associations with Nfkb1 gene expression. In conclusion, snakebite envenomation upregulates hepatic mRNA synthesis particularly of fibrinogen chains, and acute-phase markers. This response explains the fast recovery of fibrinogen levels after antivenom administration to patients bitten by B. jararaca snakes.


Asunto(s)
Proteínas Sanguíneas/genética , Regulación de la Expresión Génica , Hemostasis/genética , Hígado/metabolismo , Mordeduras de Serpientes/metabolismo , Animales , Antivenenos/uso terapéutico , Trastornos de la Coagulación Sanguínea , Bothrops/metabolismo , Modelos Animales de Enfermedad , Fibrinógeno/química , Fibrinógeno/genética , Fibrinógeno/metabolismo , Haptoglobinas/metabolismo , Hemorragia , Hemostáticos , Masculino , Ratones , ARN Mensajero/metabolismo , Factor de Transcripción STAT3/metabolismo , Mordeduras de Serpientes/sangre , Trombocitopenia , Factores de Tiempo , Factores de Transcripción/genética
8.
J Immunol Res ; 2019: 5298792, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31049358

RESUMEN

AIRmax and AIRmin mouse strains phenotypically selected for high and low acute inflammatory responsiveness (AIR) are, respectively, susceptible or resistant to developing hepatocellular carcinoma (HCC) induced by the chemical carcinogens urethane and diethylnitrosamine (DEN). Early production of TNF-α, IL-1ß, and IL-6 in the liver after DEN treatment correlated with tumor development in AIRmax mice. Transcriptome analysis of livers from untreated AIRmax and AIRmin mice showed specific gene expression profiles in each line, which might play a role in their differential susceptibility to HCC. Linkage analysis with SNP markers in F2 (AIRmax×AIRmin) intercross mice revealed two quantitative trait loci (QTL) in chromosomes 2 and 9, which are significantly associated with the number and progression of urethane-induced liver tumors. An independent linkage analysis with an intercross population from A/J and C57BL/6J inbred mice mapped regions in chromosomes 1 and 7 associated with the progression of urethane-induced liver tumors, evidencing the heterogeneity of HCC genetic control.


Asunto(s)
Animales no Consanguíneos , Carcinoma Hepatocelular/genética , Predisposición Genética a la Enfermedad , Inflamación/inmunología , Neoplasias Hepáticas/genética , Alelos , Animales , Carcinogénesis/genética , Carcinoma Hepatocelular/inmunología , Modelos Animales de Enfermedad , Ligamiento Genético , Endogamia , Inflamación/genética , Interleucina-1beta/genética , Interleucina-6/genética , Neoplasias Hepáticas/inmunología , Ratones , Ratones Endogámicos C57BL , Fenotipo , Sitios de Carácter Cuantitativo , Transcriptoma , Factores de Necrosis Tumoral/genética
9.
J Immunol Res ; 2019: 2641098, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30937315

RESUMEN

The inflammatory and autoimmune events preceding clinical symptoms in rheumatoid arthritis (RA) and other autoimmune diseases are difficult to study in human patients. Therefore, animal models that share immunologic and clinical features with human RA, such as pristane-induced arthritis (PIA), are valuable tools for assessing the primordial events related to arthritis susceptibility. PIA-resistant HIII and susceptible LIII mice were injected i.p. with pristane, and peritoneal lavage fluid was harvested in the early (7 days) and late (35 days) preclinical phases of PIA. Chemokine and cytokine levels were measured in lavage supernatant with ELISA, peritoneal inflammatory leukocytes were immunophenotyped by flow cytometry, and gene expression was determined by qRT-PCR. Leukocyte recruitment was quantitatively and qualitatively divergent in the peritoneum of HIII and LIII mice, with an early increase of CC chemokines (CCL2/CCL3/CCL5/CCL12/CCL22) in the susceptible LIII strain. Also, cytokines such as IL-12p40, IL-23, and IL-18 were elevated in LIII mice while IL-6 was increased in HIII animals. The results show that an early peritoneal CC chemokine response is an important feature of arthritis susceptibility and defines potential biomarkers in this model.


Asunto(s)
Artritis Experimental/inmunología , Artritis Reumatoide/inmunología , Quimiocinas CC/inmunología , Inflamación , Peritoneo/inmunología , Animales , Artritis Experimental/inducido químicamente , Biomarcadores , Citocinas/inmunología , Modelos Animales de Enfermedad , Femenino , Interleucina-6/inmunología , Masculino , Ratones , Fenotipo , Terpenos/administración & dosificación
10.
J Immunol Res ; 2018: 1928405, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30648118

RESUMEN

Pristane-induced arthritis (PIA) in mice is an experimental model that resembles human rheumatoid arthritis, a chronic autoimmune disease that affects joints and is characterized by synovial inflammation and articular cartilage and bone destruction. AIRmax and AIRmin mouse lines differ in their susceptibility to PIA, and linkage analysis in this model mapped arthritis severity QTLs in chromosomes 5 and 8. miRNAs are a class of small RNA molecules that have been extensively studied in the development of arthritis. We analyzed miRNA and gene expression profiles in peritoneal cells of AIRmax and AIRmin lines, in order to evaluate the genetic architecture in this model. Susceptible AIRmax mice showed higher gene (2025 vs 1043) and miRNA (240 vs 59) modulation than resistant AIRmin mice at the onset of disease symptoms. miR-132-3p/212-3p, miR-106-5p, miR-27b-3p, and miR-25-3p were among the miRNAs with the highest expression in susceptible animals, showing a negative correlation with the expression of predicted target genes (Il10, Cd69, and Sp1r1). Our study showed that global gene and miRNA expression profiles in peritoneal cells of susceptible AIRmax and resistant AIRmin lines during pristane-induced arthritis are distinct, evidencing interesting targets for further validation.


Asunto(s)
Artritis Experimental/genética , Artritis Reumatoide/genética , MicroARNs/genética , Peritoneo/fisiología , Animales , Artritis Experimental/inducido químicamente , Células Cultivadas , Susceptibilidad a Enfermedades , Femenino , Humanos , Interleucina-10/genética , Masculino , Ratones , Ratones Mutantes , Peritoneo/patología , Sitios de Carácter Cuantitativo/genética , Terpenos/administración & dosificación , Transcriptoma
11.
Gut Pathog ; 9: 43, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28794801

RESUMEN

BACKGROUND: Dysbiosis is linked to the cause of several human diseases, many of which having an immunity related component. This work investigated whether mice genetically selected for low or high antibody production display differences in intestinal bacterial communities, and consisted in the comparison of fecal 16SV6-V8 rDNA PCR amplicons resolved by temperature gradient gel electrophoresis (TGGE) of five each of low (LIII) and high (HIII) antibody producing mice. 16SV6 rDNA amplicons of 2 mice from each line were sequenced. RESULTS: LIII mice were grouped in a single TGGE cluster, displayed a low α-diversity, and were distinguished by low Firmicutes/Bacteroidetes ratio. CONCLUSION: The results suggest that genetically driven low antibody production in mice is associated with gut dysbiosis.

12.
Inflamm Res ; 65(4): 313-23, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26820840

RESUMEN

OBJECTIVE AND DESIGN: AIRmax and AIRmin mice differ in their local acute inflammatory reactions to polyacrylamide beads (Biogel). These lines were developed to identify genes that affect the intensity of the acute inflammatory response (AIR) and to investigate the cellular and molecular mechanisms of acute inflammation. Although these lines are well established, differences in their responses to chronic inflammatory Biogel exposure have not yet been described. We investigated whether the selective process that modified the acute inflammatory responses in these animals also affected the development of their chronic inflammatory responses. RESULTS: Inflammatory exudate cell infiltration was more intense in AIRmax than AIRmin mice at both 48 h and 30 days. Genes involved in signal transduction and immune/inflammatory responses were differentially expressed in the treated skin of AIRmax and AIRmin mice, and divergent expression of some acute inflammatory response genes was detected up to 30 days post-Biogel. However, distinct expression of several pro and anti-inflammatory response genes in both periods was observed. CONCLUSION: These results indicate that the selective process for acute inflammation affected the development of chronic inflammatory responses to Biogel, suggesting common genetic control.


Asunto(s)
Resinas Acrílicas/farmacología , Inflamación/genética , Transcriptoma/efectos de los fármacos , Enfermedad Aguda , Animales , Enfermedad Crónica , Citocinas/genética , Citocinas/inmunología , Femenino , Geles , Inflamación/inmunología , Masculino , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Piel/efectos de los fármacos , Piel/metabolismo
13.
DNA Repair (Amst) ; 37: 43-52, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26687588

RESUMEN

Exposure to polycyclic aromatic hydrocarbon (PAH) environmental contaminants has been associated with the development of mutations and cancer. 7,12-Dimethylbenz(a)anthracene ( DMBA), a genotoxic agent, reacts with DNA directly, inducing p53-dependent cytotoxicity resulting in cell death by apoptosis or giving rise to cancer. DMBA metabolism largely depends on activation of the aryl hydrocarbon receptor (AhR). Mice phenotypically selected for high (AIRmax) or low (AIRmin) acute inflammatory response present a complete segregation of Ahr alleles endowed with low (Ahr(d)) or high (Ahr(b1)) affinity to PAHs, respectively. To evaluate the role of AhR genetic polymorphism on the bone marrow susceptibility to DMBA, AIRmax and AIRmin mice were treated with a single intraperitoneal injection of DMBA (50mg/kg b.w.) in olive oil. Bone marrow cells (BMCs) were phenotyped by both flow cytometry and cytoslide preparations. Despite a significant decrease in total cell count in BM from AIRmin mice, there was an increase of blast cells and immature neutrophils at 1 and 50 days after DMBA treatment, probably due to a cell-cycle blockade at the G1/S transition leading to immature stage cell production. A panel of proteins related to cell cycle regulation was evaluated in immature BM cells (Lin(-)) by Western Blot, and DNA damage and repair were measured using an alkaline version of the Comet assay. In Lin(-) cells isolated from AIRmin mice, high levels were found in both p53 and p21 protein contents in contrast with the low levels of CDK4 and Ciclin D1. Evaluation of DNA repair in DMBA-treated BMCs, indicated long-lasting genotoxicity and cytotoxicity in BMC from AIRmin mice and a blockade of cell cycle progression. On the other hand, AIRmax mice have a high capacity of DNA damage repair and protection. These mechanisms can be associated with the differential susceptibility to the toxic and carcinogenic effects of DMBA observed in these mice.


Asunto(s)
9,10-Dimetil-1,2-benzantraceno/farmacología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Células de la Médula Ósea/efectos de los fármacos , Daño del ADN , Contaminantes Ambientales/toxicidad , Mutágenos/toxicidad , Receptores de Hidrocarburo de Aril/genética , 9,10-Dimetil-1,2-benzantraceno/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ensayo Cometa , ADN/efectos de los fármacos , Reparación del ADN/genética , Citometría de Flujo , Inflamación/genética , Masculino , Ratones , Polimorfismo Genético , Receptores de Hidrocarburo de Aril/metabolismo
14.
Mediators Inflamm ; 2014: 952857, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25197170

RESUMEN

Trypanosoma cruzi infection was studied in mouse lines selected for maximal (AIRmax) or minimal (AIRmin) acute inflammatory reaction and for high (HIII) or low (LIII) antibody (Ab) responses to complex antigens. Resistance was associated with gender (females) and strain-the high responder lines AIRmax and HIII were resistant. The higher resistance of HIII as compared to LIII mice extended to higher infective doses and was correlated with enhanced production of IFN-γ and nitric oxide production by peritoneal and lymph node cells, in HIII males and females. We also analyzed the involvement of previously mapped Ab and T. cruzi response QTL with the survival of Selection III mice to T. cruzi infections in a segregating backcross [F1(HIII×LIII) ×LIII] population. An Ab production QTL marker mapping to mouse chromosome 1 (34.8 cM) significantly cosegregated with survival after acute T. cruzi infections, indicating that this region also harbors genes whose alleles modulate resistance to acute T. cruzi infection.


Asunto(s)
Enfermedad de Chagas/genética , Enfermedad de Chagas/inmunología , Ligamiento Genético/genética , Sitios de Carácter Cuantitativo/genética , Trypanosoma cruzi/patogenicidad , Animales , Formación de Anticuerpos/genética , Formación de Anticuerpos/fisiología , Femenino , Masculino , Ratones , Trypanosoma cruzi/inmunología
15.
Int J Toxicol ; 33(2): 130-42, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24563413

RESUMEN

Polycyclic aromatic hydrocarbons, such as 7,12-dimethylbenz(a)anthracene (DMBA), are environmental pollutants that exert multiple toxic and carcinogenic effects. Studies showed that these effects are mediated by activation of the aryl hydrocarbon receptor (AhR) and modulated by allelic variants of Ahr gene. Here, we investigated the effects of DMBA treatment in the inflammatory response and bone marrow (BM) hematopoietic function of maximal acute inflammatory response (AIRmax) and minimal acute inflammatory response (AIRmin) heterogeneous mouse lines selected for high and low acute inflammatory responsiveness, respectively. The phenotypic selection resulted in the segregation of the Ahr(d) and Ahr(b1) alleles that confer low and high receptor ligand-binding affinity, respectively, in AIRmax and AIRmin mice. We observed a reduction in BM mature granulocyte population in AIRmin mice 24 hours after DMBA treatment while both blast and immature myeloid cells were increased. Proliferation and differentiation of BM myeloid cells in response to in vitro granulocyte-macrophage colony-stimulating factor stimulus were impaired in AIRmin-treated mice. These DMBA effects on myeloid BM cells (BMCs) affected the in vivo leukocyte migration to an inflammatory site induced by polyacrylamide beads (Biogel P-100, Bio-Rad, France) injection in AIRmin mice. On the other hand, these alterations were not observed in DMBA-treated AIRmax mice. These data indicate that DMBA affects myeloid cell differentiation and inflammatory response and Ahr(b1) allele in the genetic background of AIRmin mice contributes to this effect.


Asunto(s)
9,10-Dimetil-1,2-benzantraceno/toxicidad , Células de la Médula Ósea/patología , Enfermedades de la Médula Ósea/inducido químicamente , Carcinógenos/toxicidad , Inflamación/inducido químicamente , Receptores de Hidrocarburo de Aril/genética , Animales , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Enfermedades de la Médula Ósea/patología , Moléculas de Adhesión Celular/análisis , Moléculas de Adhesión Celular/biosíntesis , Línea Celular , Citocinas/análisis , Citocinas/biosíntesis , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/patología , Peróxido de Hidrógeno/metabolismo , Ratones , Óxido Nítrico/metabolismo , Receptores de Hidrocarburo de Aril/efectos de los fármacos , Receptores de Hidrocarburo de Aril/metabolismo
16.
BMC Genomics ; 14: 724, 2013 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-24148528

RESUMEN

BACKGROUND: The genetic basis of susceptibility to renal tumorigenesis has not yet been established in mouse strains. Mouse lines derived by bidirectional phenotypic selection on the basis of their maximal (AIRmax) or minimal (AIRmin) acute inflammatory responsiveness differ widely in susceptibility to spontaneous and urethane-induced renal tumorigenesis. To map the functional loci modulating renal tumor susceptibility in these mice, we carried out a genome-wide genetic linkage study, using SNP arrays, in an (AIRmax x AIRmin)F2 intercross population treated with a single urethane dose at 1 week of age and phenotyped for renal tumors at 35 weeks of age. RESULTS: AIRmax mice did not develop renal tumors spontaneously nor in response to urethane, whereas in AIRmin mice renal tumors formed spontaneously (in 52% of animals) and after urethane induction (89%). The tumors had a papillary morphology and were positive for alpha-methylacyl-CoA racemase and negative for CD10. By analysis of 879 informative SNPs in 662 mice, we mapped a single quantitative trait locus modulating the incidence of renal tumors in the (AIRmax x AIRmin)F2 intercross population. This locus, which we named Renal tumor modifier QTL 1 (Rtm1), mapped to chromosome 17 at 23.4 Mb (LOD score = 15.8), with SNPs rs3696835 and rs3719497 flanking the LOD score peak. The A allele of rs3719497 from AIRmin mice was associated with a 2.5-fold increased odds ratio for renal tumor development. The LOD score peak included the Tuberous sclerosis 2 (Tsc2) gene which has already been implicated in kidney disease: loss of function by germline retroviral insertion is associated with spontaneous renal tumorigenesis in the Eker rat, and heterozygous-null Tsc2(+/-) mice develop renal cystadenomas. CONCLUSIONS: We mapped Rtm1 as a single major locus modulating renal tumorigenesis in a murine intercross population. Thus, the AIR mouse lines can be considered a new genetic model for studying the role of germline and somatic molecular alterations in kidney neoplastic disease.


Asunto(s)
Genoma , Neoplasias Renales/genética , Animales , Cruzamientos Genéticos , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Ligamiento Genético , Genotipo , Neoplasias Renales/epidemiología , Neoplasias Renales/patología , Escala de Lod , Ratones , Neprilisina/genética , Neprilisina/metabolismo , Oportunidad Relativa , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Racemasas y Epimerasas/genética , Racemasas y Epimerasas/metabolismo
17.
J Immunol ; 185(3): 1616-21, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20610646

RESUMEN

Genome-wide linkage analysis using single nucleotide polymorphism arrays was carried out in pedigrees of mice differing in the extent of acute inflammatory response (AIRmax or AIRmin). The AIR phenotype was determined by quantifying the number of infiltrating cells in the 24-h exudate induced by Biogel P-100 s.c. injection and by ex vivo IL-1beta production by leukocytes stimulated with LPS and ATP. We mapped the major inflammatory response modulator 1 locus on chromosome 7, at the 1-logarithm of odds (LOD) confidence interval from 116.75 to 139.75 Mb, linked to the number of infiltrating cells (LOD = 3.61) through the production of IL-1beta (LOD = 9.35). Of several interesting candidate genes mapping to the inflammatory response modulator 1 locus, 28 of these were differentially expressed in the bone marrow of AIRmax and AIRmin mice. These findings represent a step toward the identification of the genes underlying this complex phenotype.


Asunto(s)
Sitios Genéticos/inmunología , Mediadores de Inflamación/fisiología , Interleucina-1beta/biosíntesis , Interleucina-1beta/genética , Enfermedad Aguda , Animales , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Mapeo Cromosómico , Cruzamientos Genéticos , Femenino , Regulación de la Expresión Génica/inmunología , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Interleucina-1beta/fisiología , Escala de Lod , Masculino , Ratones , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/inmunología
18.
Microbes Infect ; 8(12-13): 2766-71, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17035062

RESUMEN

Two lines of mice selected to produce maximal (AIRmax) or minimal (AIRmin) acute inflammatory reactions (AIR) differ in their susceptibility to infection by Salmonella enterica serotype Typhimurium (S. Typhimurium). The LD(50) for AIRmax mice is 1000 times higher than that observed for AIRmin mice, and higher frequencies of Slc11a1 alleles (known to confer either resistance (R) or high susceptibility (S) to S. Typhimurium) were consistently found in AIRmax and AIRmin mouse lines, respectively. In order to evaluate the effect of the quantitative trait loci (QTL) segregated in AIRmax and AIRmin mice on Slc11a1 dependent susceptibility to S. Typhimurium, the R and S alleles were fixed in homozygosity in AIRmax and AIRmin backgrounds by genotype assisted breedings. These new lines were named AIRmax(RR), AIRmax(SS), AIRmin(RR), and AIRmin(SS). Acute inflammation of Slc11a1(RR) animals was more severe in comparison to their Slc11a1(SS) counterparts, implicating Slc11a1 (or other linked genes) in AIR regulation. The LD(50) of S. Typhimurium was 800-times higher for AIRmax(SS) than for AIRmin(SS), demonstrating that AIR QTL can act as modifiers of the Slc11a1(SS) susceptibility gene. Four microsatellite markers for S. Typhimurium susceptibility QTL described in other mouse lines showed specific allele fixation in AIRmax or AIRmin mice, suggesting that these chromosomal regions also segregate with inflammatory phenotypes.


Asunto(s)
Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/fisiología , Sitios de Carácter Cuantitativo , Salmonelosis Animal/genética , Salmonella typhimurium , Reacción de Fase Aguda , Alelos , Animales , Modelos Animales de Enfermedad , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Inmunidad Innata , Dosificación Letal Mediana , Masculino , Ratones , Ratones Endogámicos , Salmonelosis Animal/inmunología , Salmonelosis Animal/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...