Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Anesthesiol ; 23(1): 391, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38030979

RESUMEN

BACKGROUND: Machine-learning models may improve prediction of length of stay (LOS) and morbidity after surgery. However, few studies include fast-track programs, and most rely on administrative coding with limited follow-up and information on perioperative care. This study investigates potential benefits of a machine-learning model for prediction of postoperative morbidity in fast-track total hip (THA) and knee arthroplasty (TKA). METHODS: Cohort study in consecutive unselected primary THA/TKA between 2014-2017 from seven Danish centers with established fast-track protocols. Preoperative comorbidity and prescribed medication were recorded prospectively and information on length of stay and readmissions was obtained through the Danish National Patient Registry and medical records. We used a machine-learning model (Boosted Decision Trees) based on boosted decision trees with 33 preoperative variables for predicting "medical" morbidity leading to LOS > 4 days or 90-days readmissions and compared to a logistical regression model based on the same variables. We also evaluated two parsimonious models, using the ten most important variables in the full machine-learning and logistic regression models. Data collected between 2014-2016 (n:18,013) was used for model training and data from 2017 (n:3913) was used for testing. Model performances were analyzed using precision, area under receiver operating (AUROC) and precision recall curves (AUPRC), as well as the Mathews Correlation Coefficient. Variable importance was analyzed using Shapley Additive Explanations values. RESULTS: Using a threshold of 20% "risk-patients" (n:782), precision, AUROC and AUPRC were 13.6%, 76.3% and 15.5% vs. 12.4%, 74.7% and 15.6% for the machine-learning and logistic regression model, respectively. The parsimonious machine-learning model performed better than the full logistic regression model. Of the top ten variables, eight were shared between the machine-learning and logistic regression models, but with a considerable age-related variation in importance of specific types of medication. CONCLUSION: A machine-learning model using preoperative characteristics and prescriptions slightly improved identification of patients in high-risk of "medical" complications after fast-track THA and TKA compared to a logistic regression model. Such algorithms could help find a manageable population of patients who may benefit most from intensified perioperative care.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Artroplastia de Reemplazo de Rodilla , Humanos , Estudios de Cohortes , Artroplastia de Reemplazo de Rodilla/efectos adversos , Modelos Logísticos , Morbilidad , Aprendizaje Automático , Artroplastia de Reemplazo de Cadera/efectos adversos , Tiempo de Internación
2.
Cell Syst ; 14(5): 382-391.e5, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37201507

RESUMEN

Control of dynamical processes is vital for maintaining correct cell regulation and cell-fate decisions. Numerous regulatory networks show oscillatory behavior; however, our knowledge of how one oscillator behaves when stimulated by two or more external oscillatory signals is still missing. We explore this problem by constructing a synthetic oscillatory system in yeast and stimulate it with two external oscillatory signals. Letting model verification and prediction operate in a tight interplay with experimental observations, we find that stimulation with two external signals expands the plateau of entrainment and reduces the fluctuations of oscillations. Furthermore, by adjusting the phase differences of external signals, one can control the amplitude of oscillations, which is understood through the signal delay of the unperturbed oscillatory network. With this we reveal a direct amplitude dependency of downstream gene transcription. Taken together, these results suggest a new path to control oscillatory systems by coupled oscillator cooperativity.


Asunto(s)
Ciclo Celular , Diferenciación Celular , Fenómenos Cronobiológicos
3.
Cell ; 185(23): 4394-4408.e10, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36368307

RESUMEN

Living organisms are constantly exposed to DNA damage, and optimal repair is therefore crucial. A characteristic hallmark of the response is the formation of sub-compartments around the site of damage, known as foci. Following multiple DNA breaks, the transcription factor p53 exhibits oscillations in its nuclear concentration, but how this dynamics can affect the repair remains unknown. Here, we formulate a theory for foci formation through droplet condensation and discover how oscillations in p53, with its specific periodicity and amplitude, optimize the repair process by preventing Ostwald ripening and distributing protein material in space and time. Based on the theory predictions, we reveal experimentally that the oscillatory dynamics of p53 does enhance the repair efficiency. These results connect the dynamical signaling of p53 with the microscopic repair process and create a new paradigm for the interplay of complex dynamics and phase transitions in biology.


Asunto(s)
Proteínas Proto-Oncogénicas c-mdm2 , Proteína p53 Supresora de Tumor , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Reparación del ADN , Daño del ADN , Transducción de Señal/fisiología
4.
R Soc Open Sci ; 9(9): 220018, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36117868

RESUMEN

The modelling of pandemics has become a critical aspect in modern society. Even though artificial intelligence can help the forecast, the implementation of ordinary differential equations which estimate the time development in the number of susceptible, (exposed), infected and recovered (SIR/SEIR) individuals is still important in order to understand the stage of the pandemic. These models are based on simplified assumptions which constitute approximations, but to what extent this are erroneous is not understood since many factors can affect the development. In this paper, we introduce an agent-based model including spatial clustering and heterogeneities in connectivity and infection strength. Based on Danish population data, we estimate how this impacts the early prediction of a pandemic and compare this to the long-term development. Our results show that early phase SEIR model predictions overestimate the peak number of infected and the equilibrium level by at least a factor of two. These results are robust to variations of parameters influencing connection distances and independent of the distribution of infection rates.

5.
Front Cell Dev Biol ; 10: 910738, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35794861

RESUMEN

The transcription factor NF-κB plays a vital role in the control of the immune system, and following stimulation with TNF-α its nuclear concentration shows oscillatory behaviour. How environmental factors, in particular temperature, can control the oscillations and thereby affect gene stimulation is still remains to be resolved question. In this work, we reveal that the period of the oscillations decreases with increasing temperature. We investigate this using a mathematical model, and by applying results from statistical physics, we introduce temperature dependency to all rates, resulting in a remarkable correspondence between model and experiments. Our model predicts how temperature affects downstream protein production and find a crossover, where high affinity genes upregulates at high temperatures. Finally, we show how or that oscillatory temperatures can entrain NF-κB oscillations and lead to chaotic dynamics presenting a simple path to chaotic conditions in cellular biology.

7.
eNeuro ; 9(2)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35165198

RESUMEN

Parkinson's disease (PD) results from a loss of dopaminergic neurons. What triggers the break-down of neuronal signaling, and how this might be compensated, is not understood. The age of onset, progression and symptoms vary between patients, and our understanding of the clinical variability remains incomplete. In this study, we investigate this, by characterizing the dopaminergic landscape in healthy and denervated striatum, using biophysical modeling. Based on currently proposed mechanisms, we model three distinct denervation patterns, and show how this affect the dopaminergic network. Depending on the denervation pattern, we show how local and global differences arise in the activity of striatal neurons. Finally, we use the mathematical formalism to suggest a cellular strategy for maintaining normal dopamine (DA) signaling following neuronal denervation. This strategy is characterized by dual enhancement of both the release and uptake capacity of DA in the remaining neurons. Overall, our results derive a new conceptual framework for the impaired dopaminergic signaling related to PD and offers testable predictions for future research directions.


Asunto(s)
Dopamina , Enfermedad de Parkinson , Cuerpo Estriado/fisiología , Desnervación , Dopamina/fisiología , Neuronas Dopaminérgicas , Humanos
8.
Integr Biol (Camb) ; 13(8): 197-209, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34278428

RESUMEN

How cells sense and respond to mechanical stimuli remains an open question. Recent advances have identified the translocation of Yes-associated protein (YAP) between nucleus and cytoplasm as a central mechanism for sensing mechanical forces and regulating mechanotransduction. We formulate a spatiotemporal model of the mechanotransduction signalling pathway that includes coupling of YAP with the cell force-generation machinery through the Rho family of GTPases. Considering the active and inactive forms of a single Rho protein (GTP/GDP-bound) and of YAP (non-phosphorylated/phosphorylated), we study the cross-talk between cell polarization due to active Rho and YAP activation through its nuclear localization. For fixed mechanical stimuli, our model predicts stationary nuclear-to-cytoplasmic YAP ratios consistent with experimental data at varying adhesive cell area. We further predict damped and even sustained oscillations in the YAP nuclear-to-cytoplasmic ratio by accounting for recently reported positive and negative YAP-Rho feedback. Extending the framework to time-varying mechanical stimuli that simulate cyclic stretching and compression, we show that the YAP nuclear-to-cytoplasmic ratio's time dependence follows that of the cyclic mechanical stimulus. The model presents one of the first frameworks for understanding spatiotemporal YAP mechanotransduction, providing several predictions of possible YAP localization dynamics, and suggesting new directions for experimental and theoretical studies.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Mecanotransducción Celular , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP
9.
Cell Syst ; 12(4): 291-303, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33887201

RESUMEN

The fundamental mechanisms that control and regulate biological organisms exhibit a surprising level of complexity. Oscillators are perhaps the simplest motifs that produce time-varying dynamics and are ubiquitous in biological systems. It is also known that such biological oscillators interact with each other-for instance, circadian oscillators affect the cell cycle, and somitogenesis clock proteins in adjacent cells affect each other in developing embryos. Therefore, it is vital to understand the effects that can emerge from non-linear interaction between oscillations. Here, we show how oscillations typically arise in biology and take the reader on a tour through the great variety in dynamics that can emerge even from a single pair of coupled oscillators. We explain how chaotic dynamics can emerge and outline the methods of detecting this in experimental time traces. Finally, we discuss the potential role of such complex dynamical features in biological systems.


Asunto(s)
Relojes Biológicos/fisiología , Biología , Humanos
10.
Sci Rep ; 10(1): 3907, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32127626

RESUMEN

Epidemics are highly unpredictable, and so are real-world population dynamics. In this paper, we examine a dynamical model of an ecosystem with one predator and two prey species of which one carries a disease. We find that the system behaves chaotically for a wide range of parameters. Using the allometric mass scaling of animal and disease lifetimes, we predict chaos if (a) the disease is infectious enough to persist, and (b) it affects the larger prey species. This provides another example of chaos in a Lotka-Volterra system and a possible explanation for the apparent randomness of epizootic outbreaks.


Asunto(s)
Brotes de Enfermedades/estadística & datos numéricos , Modelos Teóricos , Conducta Predatoria , Animales , Ecosistema , Dinámicas no Lineales
11.
Cell Syst ; 9(6): 548-558.e5, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31812692

RESUMEN

The tumor-suppressive transcription factor p53 is a master regulator of stress responses. In non-stressed conditions, p53 is maintained at low levels by the ubiquitin ligase Mdm2 and its binding partner Mdmx. Mdmx depletion leads to a biphasic p53 response, with an initial post-mitotic pulse followed by oscillations. The mechanism underlying this dynamical behavior is unknown. Two different roles for Mdmx have been proposed: enhancing p53 ubiquitination by Mdm2 and inhibiting p53 activity. Here, we developed a mathematical model of the p53/Mdm2/Mdmx network to investigate which Mdmx functions quantitatively affect specific features of p53 dynamics under various conditions. We found that enhancement of Mdm2 activity was the most critical role of Mdmx under unstressed conditions. The model also accurately predicted p53 dynamics in Mdmx-depleted cells following DNA damage. This work outlines a strategy for rapidly testing possible network interactions to reveal those most impactful in regulating the dynamics of key proteins.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas de Ciclo Celular/genética , Daño del ADN , Humanos , Células MCF-7 , Modelos Teóricos , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteína p53 Supresora de Tumor/genética , Ubiquitinación
12.
J R Soc Interface ; 16(158): 20190451, 2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-31530134

RESUMEN

Segment formation in vertebrate embryos is a stunning example of biological self-organization. Here, we present an idealized framework, in which we treat the presomitic mesoderm (PSM) as a one-dimensional line of oscillators. We use the framework to derive constraints that connect the size of somites, and the timing of their formation, to the growth of the PSM and the gradient of the somitogenesis clock period across the PSM. Our analysis recapitulates the observations made recently in ex vivo cultures of mouse PSM cells, and makes predictions for how perturbations, such as increased Wnt levels, would alter somite widths. Finally, our analysis makes testable predictions for the shape of the phase profile and somite widths at different stages of PSM growth. In particular, we show that the phase profile is robustly concave when the PSM length is steady and slightly convex in an important special case when it is decreasing exponentially. In both cases, the phase profile scales with the PSM length; in the latter case, it scales dynamically. This has important consequences for the velocity of the waves that traverse the PSM and trigger somite formation, as well as the effect of errors in phase measurement on somite widths.


Asunto(s)
Tipificación del Cuerpo/fisiología , Embrión de Mamíferos/embriología , Desarrollo Embrionario/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Somitos/embriología , Vía de Señalización Wnt/fisiología , Animales , Ratones
13.
Nat Commun ; 10(1): 71, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30622249

RESUMEN

The control of proteins by a transcription factor with periodically varying concentration exhibits intriguing dynamical behaviour. Even though it is accepted that transcription factors vary their dynamics in response to different situations, insight into how this affects downstream genes is lacking. Here, we investigate how oscillations and chaotic dynamics in the transcription factor NF-κB can affect downstream protein production. We describe how it is possible to control the effective dynamics of the transcription factor by stimulating it with an oscillating ligand. We find that chaotic dynamics modulates gene expression and up-regulates certain families of low-affinity genes, even in the presence of extrinsic and intrinsic noise. Furthermore, this leads to an increase in the production of protein complexes and the efficiency of their assembly. Finally, we show how chaotic dynamics creates a heterogeneous population of cell states, and describe how this can be beneficial in multi-toxic environments.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Modelos Genéticos , FN-kappa B/metabolismo , Ligandos , Dinámicas no Lineales
14.
Cell Syst ; 5(6): 591-603.e4, 2017 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-29248375

RESUMEN

Previous studies have suggested that changes in extracellular ion concentrations initiate the transition from an activity state that characterizes sleep in cortical neurons to states that characterize wakefulness. However, because neuronal activity and extracellular ion concentrations are interdependent, isolating their unique roles during sleep-wake transitions is not possible in vivo. Here, we extend the Averaged-Neuron model and demonstrate that, although changes in extracellular ion concentrations occur concurrently, decreasing the conductance of calcium-dependent potassium channels initiates the transition from sleep to wakefulness. We find that sleep is governed by stable, self-sustained oscillations in neuronal firing patterns, whereas the quiet awake state and active awake state are both governed by irregular oscillations and chaotic dynamics; transitions between these separable awake states are prompted by ionic changes. Although waking is indicative of a shift from stable to chaotic neuronal firing patterns, we illustrate that the properties of chaotic dynamics ensure that the transition between states is smooth and robust to noise.


Asunto(s)
Encéfalo/fisiología , Modelos Neurológicos , Neuronas/fisiología , Canales de Potasio/metabolismo , Sueño , Vigilia , Animales , Fenómenos Electrofisiológicos , Espacio Extracelular , Humanos , Iones/metabolismo
15.
PLoS Biol ; 15(7): e2000737, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28700688

RESUMEN

Early mammalian development is both highly regulative and self-organizing. It involves the interplay of cell position, predetermined gene regulatory networks, and environmental interactions to generate the physical arrangement of the blastocyst with precise timing. However, this process occurs in the absence of maternal information and in the presence of transcriptional stochasticity. How does the preimplantation embryo ensure robust, reproducible development in this context? It utilizes a versatile toolbox that includes complex intracellular networks coupled to cell-cell communication, segregation by differential adhesion, and apoptosis. Here, we ask whether a minimal set of developmental rules based on this toolbox is sufficient for successful blastocyst development, and to what extent these rules can explain mutant and experimental phenotypes. We implemented experimentally reported mechanisms for polarity, cell-cell signaling, adhesion, and apoptosis as a set of developmental rules in an agent-based in silico model of physically interacting cells. We find that this model quantitatively reproduces specific mutant phenotypes and provides an explanation for the emergence of heterogeneity without requiring any initial transcriptional variation. It also suggests that a fixed time point for the cells' competence of fibroblast growth factor (FGF)/extracellular signal-regulated kinase (ERK) sets an embryonic clock that enables certain scaling phenomena, a concept that we evaluate quantitatively by manipulating embryos in vitro. Based on these observations, we conclude that the minimal set of rules enables the embryo to experiment with stochastic gene expression and could provide the robustness necessary for the evolutionary diversification of the preimplantation gene regulatory network.


Asunto(s)
Comunicación Celular , Simulación por Computador , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Mamíferos/embriología , Animales , Polaridad Celular , Modelos Biológicos , Transducción de Señal , Procesos Estocásticos
16.
Biophys J ; 113(1): 148-156, 2017 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-28700913

RESUMEN

Allele number, or zygosity, is a clear determinant of gene expression in diploid cells. However, the relationship between the number of copies of a gene and its expression can be hard to anticipate, especially when the gene in question is embedded in a regulatory circuit that contains feedback. Here, we study this question making use of the natural genetic variability of human populations, which allows us to compare the expression profiles of a receptor protein in natural killer cells among donors infected with human cytomegalovirus with one or two copies of the allele. Crucially, the distribution of gene expression in many of the donors is bimodal, which indicates the presence of a positive feedback loop somewhere in the regulatory environment of the gene. Three separate gene-circuit models differing in the location of the positive feedback loop with respect to the gene can all reproduce the homozygous data. However, when the resulting fitted models are applied to the hemizygous donors, one model (the one with the positive feedback located at the level of gene transcription) is superior in describing the experimentally observed gene-expression profile. In that way, our work shows that zygosity can help us relate the structure and function of gene regulatory networks.


Asunto(s)
Infecciones por Citomegalovirus/genética , Dosificación de Gen , Células Asesinas Naturales/metabolismo , Subfamília C de Receptores Similares a Lectina de Células NK/genética , Citomegalovirus , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/metabolismo , Retroalimentación Fisiológica , Citometría de Flujo , Expresión Génica , Redes Reguladoras de Genes/fisiología , Hemicigoto , Homocigoto , Humanos , Células Asesinas Naturales/inmunología , Modelos Genéticos , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo , Fenotipo
17.
Cell Syst ; 3(6): 532-539.e3, 2016 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-28009264

RESUMEN

Oscillations and noise drive many processes in biology, but how both affect the activity of the transcription factor nuclear factor κB (NF-κB) is not understood. Here, we observe that when NF-κB oscillations are entrained by periodic tumor necrosis factor (TNF) inputs in experiments, NF-κB exhibits jumps between frequency modes, a phenomenon we call "cellular mode-hopping." By comparing stochastic simulations of NF-κB oscillations to deterministic simulations conducted inside and outside the chaotic regime of parameter space, we show that noise facilitates mode-hopping in all regimes. However, when the deterministic system is driven by chaotic dynamics, hops between modes are erratic and short-lived, whereas in experiments, the system spends several periods in one entrainment mode before hopping and rarely visits more than two modes. The experimental behavior matches our simulations of noise-induced mode-hopping outside the chaotic regime. We suggest that mode-hopping is a mechanism by which different NF-κB-dependent genes under frequency control can be expressed at different times.

18.
PLoS One ; 11(6): e0157436, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27300084

RESUMEN

The weight of links in a network is often related to the similarity of the nodes. Here, we introduce a simple tunable measure for analysing the similarity of nodes across different link weights. In particular, we use the measure to analyze homophily in a group of 659 freshman students at a large university. Our analysis is based on data obtained using smartphones equipped with custom data collection software, complemented by questionnaire-based data. The network of social contacts is represented as a weighted multilayer network constructed from different channels of telecommunication as well as data on face-to-face contacts. We find that even strongly connected individuals are not more similar with respect to basic personality traits than randomly chosen pairs of individuals. In contrast, several socio-demographics variables have a significant degree of similarity. We further observe that similarity might be present in one layer of the multilayer network and simultaneously be absent in the other layers. For a variable such as gender, our measure reveals a transition from similarity between nodes connected with links of relatively low weight to dis-similarity for the nodes connected by the strongest links. We finally analyze the overlap between layers in the network for different levels of acquaintanceships.


Asunto(s)
Personalidad , Apoyo Social , Simulación por Computador , Femenino , Amigos , Humanos , Masculino , Teléfono Inteligente , Estudiantes , Encuestas y Cuestionarios , Envío de Mensajes de Texto
19.
J Chem Phys ; 143(16): 164901, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26520548

RESUMEN

A number of different proteins possess the ability to polymerize into filamentous structures. Certain classes of such assemblies can have key functional roles in the cell, such as providing the structural basis for the cytoskeleton in the case of actin and tubulin, while others are implicated in the development of many pathological conditions, including Alzheimer's and Parkinson's diseases. In general, the fragmentation of such structures changes the total number of filament ends, which act as growth sites, and hence is a key feature of the dynamics of filamentous growth phenomena. In this paper, we present an analytical study of the master equation of breakable filament assembly and derive closed-form expressions for the time evolution of the filament length distribution for both open and closed systems with infinite and finite monomer supply, respectively. We use this theoretical framework to analyse experimental data for length distributions of insulin amyloid fibrils and show that our theory allows insights into the microscopic mechanisms of biofilament assembly to be obtained beyond those available from the conventional analysis of filament mass only.


Asunto(s)
Amiloide/química , Insulina/química , Agregado de Proteínas , Amiloide/ultraestructura , Animales , Bovinos , Humanos , Cinética , Modelos Biológicos , Polimerizacion
20.
Sci Rep ; 5: 13910, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26365394

RESUMEN

Oscillators and switches are important elements of regulation in biological systems. These are composed of coupling negative feedback loops, which cause oscillations when delayed, and positive feedback loops, which lead to memory formation. Here, we examine the behavior of a coupled feedback system, the Negative Autoregulated Frustrated bistability motif (NAF). This motif is a combination of two previously explored motifs, the frustrated bistability motif (FBM) and the negative auto regulation motif (NAR), which both can produce oscillations. The NAF motif was previously suggested to govern long term memory formation in animals, and was used as a synthetic oscillator in bacteria. We build a mathematical model to analyze the dynamics of the NAF motif. We show analytically that the NAF motif requires an asymmetry in the strengths of activation and repression links in order to produce oscillations. We show that the effect of time delays in eukaryotic cells, originating from mRNA export and protein import, are negligible in this system. Based on the reported protein and mRNA half-lives in eukaryotic cells, we find that even though the NAF motif possesses the ability for oscillations, it mostly promotes constant protein expression at the biologically relevant parameter regimes.


Asunto(s)
Modelos Biológicos , Proteínas/química , ARN Mensajero/metabolismo , Células Eucariotas/metabolismo , Semivida , Estabilidad Proteica , Proteínas/metabolismo , Estabilidad del ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...