Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Data ; 9(1): 248, 2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-35637193

RESUMEN

The US Army Corps of Engineers (USACE) utilizes the National Oceanic and Atmospheric Administration (NOAA) National Data Buoy Center (NDBC) buoy measurements for validation of their wave models and within coastal applications. However, NDBC data are accessible via multiple archives; each with their own source-specific storage, metadata, and quality control protocols, which result in inconsistencies in the accessible data. Therefore, USACE has developed an independent, quality controlled, consistent (QCC) Measurement Archive that captures the best available NDBC observations with verified metadata. This work details the methodology behind this USACE QCC Measurement Archive; showcasing improvements in data quality via geographical location and wave parameter examples. Note that this methodology only removes known erroneous data, it does not verify data quality from an alternate source. This self-describing, USACE QCC Measurement Archive therefore provides a database of consistently stored, geographically QA/QC'd NDBC data and metadata.

2.
Eukaryot Cell ; 13(7): 919-32, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24879122

RESUMEN

Kinetoplast DNA (kDNA), the mitochondrial genome of trypanosomatids, is a giant planar network of catenated minicircles and maxicircles. In vivo kDNA is organized as a highly condensed nucleoprotein disk. So far, in Trypanosoma brucei, proteins involved in the maintenance of the kDNA condensed structure remain poorly characterized. In Crithidia fasciculata, some small basic histone H1-like kinetoplast-associated proteins (CfKAP) have been shown to condense isolated kDNA networks in vitro. High-mobility group (HMG) box-containing proteins, such as mitochondrial transcription factor A (TFAM) in mammalian cells and Abf2 in the budding yeast, have been shown essential for the packaging of mitochondrial DNA (mtDNA) into mitochondrial nucleoids, remodeling of mitochondrial nucleoids, gene expression, and maintenance of mtDNA. Here, we report that TbKAP6, a mitochondrial HMG box-containing protein, is essential for parasite cell viability and involved in kDNA replication and maintenance. The RNA interference (RNAi) depletion of TbKAP6 stopped cell growth. Replication of both minicircles and maxicircles was inhibited. RNAi or overexpression of TbKAP6 resulted in the disorganization, shrinkage, and loss of kDNA. Minicircle release, the first step in kDNA replication, was inhibited immediately after induction of RNAi, but it quickly increased 3-fold upon overexpression of TbKAP6. Since the release of covalently closed minicircles is mediated by a type II topoisomerase (topo II), we examined the potential interactions between TbKAP6 and topo II. Recombinant TbKAP6 (rTbKAP6) promotes the topo II-mediated decatenation of kDNA. rTbKAP6 can condense isolated kDNA networks in vitro. These results indicate that TbKAP6 is involved in the replication and maintenance of kDNA.


Asunto(s)
Replicación del ADN , ADN de Cinetoplasto/metabolismo , Proteínas HMGB/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas HMGB/genética , Proteínas Mitocondriales/genética , Proteínas Protozoarias/genética , Trypanosoma brucei brucei/patogenicidad
3.
Mol Microbiol ; 87(4): 713-29, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23336702

RESUMEN

In an RNAi library screen for loss of kinetoplast DNA (kDNA), we identified an uncharacterized Trypanosoma brucei protein, named TbLOK1, required for maintenance of mitochondrial shape and function. We found the TbLOK1 protein located in discrete patches in the mitochondrial outer membrane. Knock-down of TbLOK1 in procyclic trypanosomes caused the highly interconnected mitochondrial structure to collapse, forming an unbranched tubule remarkably similar to the streamlined organelle seen in the bloodstream form. Following RNAi, defects in mitochondrial respiration, inner membrane potential and mitochondrial transcription were observed. At later times following TbLOK1 depletion, kDNA was lost and a more drastic alteration in mitochondrial structure was found. Our results demonstrate the close relationship between organelle structure and function in trypanosomes.


Asunto(s)
Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/metabolismo , Tripanosomiasis Africana/parasitología , ADN de Cinetoplasto/genética , ADN de Cinetoplasto/metabolismo , Humanos , Proteínas de la Membrana/genética , Mitocondrias/genética , Proteínas Protozoarias/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/crecimiento & desarrollo
4.
ACS Appl Mater Interfaces ; 5(3): 815-21, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23317573

RESUMEN

The Diels-Alder reaction was used to yield thermal reversibility of the bonding between a partially furan-functionalized epoxy thermosetting matrix and a maleimide-treated glass fiber. Under ambient temperature conditions, the covalent bond forming product reaction dominates, but this reaction reverses at elevated temperatures to allow for interfacial healing. Single-fiber microdroplet pull-out testing was used to characterize the coupled effects of healing temperature and the glass transition temperature (T(g)) of the epoxy on interfacial strength recovery. In particular, the roles of mobility and reaction kinetics were independently varied to understand the individual effects of both.


Asunto(s)
Materiales Biocompatibles/química , Vidrio/química , Polímeros/química , Materiales Biocompatibles/síntesis química , Reacción de Cicloadición , Cinética , Ensayo de Materiales , Polímeros/síntesis química , Temperatura
5.
ACS Appl Mater Interfaces ; 4(11): 6142-50, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23088450

RESUMEN

Ionic liquid gels (ILGs) for potential use in ion transport and separation applications were generated via a free radical copolymerization of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and N,N'-methylene(bis)acrylamide (MBA) using 1-ethyl-3-methylimidazolium ethylsulfate (IL) as a room temperature ionic liquid solvent medium. The AMPS and MBA monomer solubility window in the IL in the temperature range of 25 to 65 °C was determined. In situ ATR-FTIR showed near complete conversion of monomers to a cross-linked polymer network. ILGs with glass transition temperatures (T(g)s) near -50 °C were generated with T(g) decreasing with increasing IL content. The elastic moduli in compression (200 to 6600 kPa) decreased with increasing IL content and increasing AMPS content while the conductivities (0.35 to 2.14 mS cm⁻¹) increased with increasing IL content and decreasing MBA content. The polymer-IL interaction parameter (χ) (0.48 to 0.55) was determined via a modified version of the Bray and Merrill equation.


Asunto(s)
Líquidos Iónicos/química , Modelos Químicos , Polímeros/química , Fuerza Compresiva , Simulación por Computador , Módulo de Elasticidad , Ensayo de Materiales , Transición de Fase , Temperatura , Viscosidad
6.
Annu Rev Microbiol ; 66: 473-91, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22994497

RESUMEN

One of the most fascinating and unusual features of trypanosomatids, parasites that cause disease in many tropical countries, is their mitochondrial DNA. This genome, known as kinetoplast DNA (kDNA), is organized as a single, massive DNA network formed of interlocked DNA rings. In this review, we discuss recent studies on kDNA structure and replication, emphasizing recent developments on replication enzymes, how the timing of kDNA synthesis is controlled during the cell cycle, and the machinery for segregating daughter networks after replication.


Asunto(s)
Replicación del ADN , ADN de Cinetoplasto/genética , ADN de Cinetoplasto/metabolismo , Trypanosomatina/genética , ADN Circular/genética , ADN Circular/metabolismo , ADN Protozoario/genética , ADN Protozoario/metabolismo , Conformación de Ácido Nucleico
7.
J Biol Chem ; 287(19): 15205-18, 2012 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-22403410

RESUMEN

Mitochondrial membranes maintain a specific phospholipid composition. Most phospholipids are synthesized in the endoplasmic reticulum (ER) and transported to mitochondria, but cardiolipin and phosphatidylethanolamine are produced in mitochondria. In the yeast Saccharomyces cerevisiae, phospholipid exchange between the ER and mitochondria relies on the ER-mitochondria encounter structure (ERMES) complex, which physically connects the ER and mitochondrial outer membrane. However, the proteins and mechanisms involved in phospholipid transport within mitochondria remain elusive. Here, we investigated the role of the conserved intermembrane space proteins, Ups1p and Ups2p, and an inner membrane protein, Mdm31p, in phospholipid metabolism. Our data show that loss of the ERMES complex, Ups1p, and Mdm31p causes similar defects in mitochondrial phospholipid metabolism, mitochondrial morphology, and cell growth. Defects in cells lacking the ERMES complex or Ups1p are suppressed by Mdm31p overexpression as well as additional loss of Ups2p, which antagonizes Ups1p. Combined loss of the ERMES complex and Ups1p exacerbates phospholipid defects. Finally, pulse-chase experiments using [(14)C]serine revealed that Ups1p and Ups2p antagonistically regulate conversion of phosphatidylethanolamine to phosphatidylcholine. Our results suggest that Ups proteins and Mdm31p play important roles in phospholipid biosynthesis in mitochondria. Ups proteins may function in phospholipid trafficking between the outer and inner mitochondrial membranes.


Asunto(s)
Membranas Intracelulares/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/fisiología , Fosfolípidos/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Transporte Biológico , Western Blotting , Retículo Endoplásmico/metabolismo , Concentración de Iones de Hidrógeno , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Fluorescente , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Fosfolípidos/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina/metabolismo
8.
Mol Microbiol ; 83(3): 471-85, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22220754

RESUMEN

The trypanosome mitochondrial genome, kinetoplast DNA (kDNA), is a massive network of interlocked DNA rings, including several thousand minicircles and dozens of maxicircles. The unusual complexity of kDNA would indicate that numerous proteins must be involved in its condensation, replication, segregation and gene expression. During our investigation of trypanosome mitochondrial PIF1-like helicases, we found that TbPIF8 is the smallest and most divergent. It lacks some conserved helicase domains, thus implying that unlike other mitochondrial PIF1-like helicases, this protein may have no enzymatic activity. TbPIF8 is positioned on the distal face of kDNA disk and its localization patterns vary with different kDNA replication stages. Stem-loop RNAi of TbPIF8 arrests cell growth and causes defects in kDNA segregation. RNAi of TbPIF8 causes only limited kDNA shrinkage but the networks become disorganized. Electron microcopy of thin sections of TbPIF8-depleted cells shows heterogeneous electron densities in the kinetoplast disk. Although we do not yet know its exact function, we conclude that TbPIF8 is essential for cell viability and is important for maintenance of kDNA.


Asunto(s)
ADN Helicasas/metabolismo , ADN de Cinetoplasto/genética , Genoma Mitocondrial , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/genética , ADN Helicasas/genética , Replicación del ADN , Proteínas Protozoarias/genética , Interferencia de ARN , Trypanosoma brucei brucei/crecimiento & desarrollo , Trypanosoma brucei brucei/metabolismo
9.
Eukaryot Cell ; 10(3): 286-92, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21239625

RESUMEN

Like other eukaryotes, trypanosomes have an essential type II fatty acid synthase in their mitochondrion. We have investigated the function of this synthase in bloodstream-form parasites by studying the effect of a conditional knockout of acyl carrier protein (ACP), a key player in this fatty acid synthase pathway. We found that ACP depletion not only caused small changes in cellular phospholipids but also, surprisingly, caused changes in the kinetoplast. This structure, which contains the mitochondrial genome in the form of a giant network of several thousand interlocked DNA rings (kinetoplast DNA [kDNA]), became larger in some cells and smaller or absent in others. We observed the same pattern in isolated networks viewed by either fluorescence or electron microscopy. We found that the changes in kDNA size were not due to the disruption of replication but, instead, to a defect in segregation. kDNA segregation is mediated by the tripartite attachment complex (TAC), and we hypothesize that one of the TAC components, a differentiated region of the mitochondrial double membrane, has an altered phospholipid composition when ACP is depleted. We further speculate that this compositional change affects TAC function, and thus kDNA segregation.


Asunto(s)
Proteína Transportadora de Acilo/deficiencia , ADN de Cinetoplasto/genética , Proteínas Mitocondriales/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Tripanosomiasis Africana/parasitología , Proteína Transportadora de Acilo/genética , Sangre/parasitología , ADN de Cinetoplasto/metabolismo , Humanos , Proteínas Mitocondriales/genética , Proteínas Protozoarias/genética , Trypanosoma brucei brucei/crecimiento & desarrollo
10.
Proc Natl Acad Sci U S A ; 108(1): 91-6, 2011 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-21173275

RESUMEN

Mitochondria import most of their resident proteins from the cytosol, and the import receptor Tom20 of the outer-membrane translocator TOM40 complex plays an essential role in specificity of mitochondrial protein import. Here we analyzed the effects of Tom20 binding on NMR spectra of a long mitochondrial presequence and found that it contains two distinct Tom20-binding elements. In vitro import and cross-linking experiments revealed that, although the N-terminal Tom20-binding element is essential for targeting to mitochondria, the C-terminal element increases efficiency of protein import in the step prior to translocation across the inner membrane. Therefore Tom20 has a dual role in protein import into mitochondria: recognition of the targeting signal in the presequence and tethering the presequence to the TOM40 complex to increase import efficiency.


Asunto(s)
Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/metabolismo , Sitios de Unión/genética , Inmunoprecipitación , Resonancia Magnética Nuclear Biomolecular , Unión Proteica/genética , Unión Proteica/fisiología , Transporte de Proteínas/fisiología , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Saccharomyces cerevisiae
11.
PLoS Pathog ; 6(12): e1001226, 2010 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-21187912

RESUMEN

Introduced in the 1950s, ethidium bromide (EB) is still used as an anti-trypanosomal drug for African cattle although its mechanism of killing has been unclear and controversial. EB has long been known to cause loss of the mitochondrial genome, named kinetoplast DNA (kDNA), a giant network of interlocked minicircles and maxicircles. However, the existence of viable parasites lacking kDNA (dyskinetoplastic) led many to think that kDNA loss could not be the mechanism of killing. When recent studies indicated that kDNA is indeed essential in bloodstream trypanosomes and that dyskinetoplastic cells survive only if they have a compensating mutation in the nuclear genome, we investigated the effect of EB on kDNA and its replication. We here report some remarkable effects of EB. Using EM and other techniques, we found that binding of EB to network minicircles is low, probably because of their association with proteins that prevent helix unwinding. In contrast, covalently-closed minicircles that had been released from the network for replication bind EB extensively, causing them, after isolation, to become highly supertwisted and to develop regions of left-handed Z-DNA (without EB, these circles are fully relaxed). In vivo, EB causes helix distortion of free minicircles, preventing replication initiation and resulting in kDNA loss and cell death. Unexpectedly, EB also kills dyskinetoplastic trypanosomes, lacking kDNA, by inhibiting nuclear replication. Since the effect on kDNA occurs at a >10-fold lower EB concentration than that on nuclear DNA, we conclude that minicircle replication initiation is likely EB's most vulnerable target, but the effect on nuclear replication may also contribute to cell killing.


Asunto(s)
ADN de Cinetoplasto/efectos de los fármacos , Etidio/farmacología , Trypanosoma/efectos de los fármacos , Antiprotozoarios/farmacología , Replicación del ADN/efectos de los fármacos , ADN de Forma Z , Genoma Mitocondrial/efectos de los fármacos , Conformación de Ácido Nucleico , Trypanosoma brucei brucei , Tripanosomiasis Africana
12.
ACS Appl Mater Interfaces ; 2(4): 1141-9, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20423133

RESUMEN

Self-healing materials are particularly desirable for load-bearing applications because they offer the potential for increased safety and material lifetimes. A furan-functionalized polymer network was designed that can heal via covalent bonding across the crack surface with the use of a healing agent consisting of a bismaleimide in solution. Average healing efficiencies of approximately 70% were observed. The healing ability of fiber-reinforced composite specimens was investigated with flexural, short beam shear, and double cantilever beam specimens. It was found that solvent amount and maleimide concentration play key roles in determining healing efficiency.


Asunto(s)
Biomimética , Química Orgánica/métodos , Rastreo Diferencial de Calorimetría/métodos , Vidrio , Calor , Ensayo de Materiales , Modelos Químicos , Polímeros/química , Propiedades de Superficie , Temperatura , Resistencia a la Tracción
13.
Circ Res ; 106(3): 504-13, 2010 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-20035080

RESUMEN

RATIONALE: We previously discovered several phosphorylations to the beta subunit of the mitochondrial F(1)F(o) ATP synthase complex in isolated rabbit myocytes on adenosine treatment, an agent that induces cardioprotection. The role of these phosphorylations is unknown. OBJECTIVE: The present study focuses on the functional consequences of phosphorylation of the ATP synthase complex beta subunit by generating nonphosphorylatable and phosphomimetic analogs in a model system, Saccharomyces cerevisiae. METHODS AND RESULTS: The 4 amino acid residues with homology in yeast (T58, S213, T262, and T318) were studied with respect to growth, complex and supercomplex formation, and enzymatic activity (ATPase rate). The most striking mutant was the T262 site, for which the phosphomimetic (T262E) abolished activity, whereas the nonphosphorylatable strain (T262A) had an ATPase rate equivalent to wild type. Although T262E, like all of the beta subunit mutants, was able to form the intact complex (F(1)F(o)), this strain lacked a free F(1) component found in wild-type and had a corresponding increase of lower-molecular-weight forms of the protein, indicating an assembly/stability defect. In addition, the ATPase activity was reduced but not abolished with the phosphomimetic mutation at T58, a site that altered the formation/maintenance of dimers of the F(1)F(o) ATP synthase complex. CONCLUSIONS: Taken together, these data show that pseudophosphorylation of specific amino acid residues can have separate and distinctive effects on the F(1)F(o) ATP synthase complex, suggesting the possibility that several of the phosphorylations observed in the rabbit heart can have structural and functional consequences to the F(1)F(o) ATP synthase complex.


Asunto(s)
ATPasas de Translocación de Protón/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Animales , Catálisis , Electroforesis en Gel de Poliacrilamida , Mutagénesis Sitio-Dirigida , Fosforilación , Procesamiento Proteico-Postraduccional , Subunidades de Proteína , ATPasas de Translocación de Protón/genética , Conejos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Relación Estructura-Actividad
14.
ACS Appl Mater Interfaces ; 1(5): 992-5, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-20355883

RESUMEN

The Diels-Alder reaction was used to develop a reversibly cross-linking gel as a healing agent for traditional epoxy-amine thermosets. Direct application of the reversibly cross-linking network to a crack surface in an epoxy-amine thermoset resulted in the recovery of 37% of the initial epoxy-amine network's strength. Composites in which the reversibly cross-linking gel was incorporated as a secondary particulate phase recovered 21% of the initial composite strength after the first healing cycle, with healing possible up to five times.

15.
Mol Biol Cell ; 19(12): 5387-97, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18843051

RESUMEN

By screening yeast knockouts for their dependence upon the mitochondrial genome, we identified Mgr3p, a protein that associates with the i-AAA protease complex in the mitochondrial inner membrane. Mgr3p and Mgr1p, another i-AAA-interacting protein, form a subcomplex that bind to the i-AAA subunit Yme1p. We find that loss of Mgr3p, like the lack of Mgr1p, reduces proteolysis by Yme1p. Mgr3p and Mgr1p can bind substrate even in the absence of Yme1p, and both proteins are needed for maximal binding of an unfolded substrate by the i-AAA complex. We speculate that Mgr3p and Mgr1p function in an adaptor complex that targets substrates to the i-AAA protease for degradation.


Asunto(s)
Proteínas Portadoras/metabolismo , Endopeptidasas/metabolismo , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Complejos Multienzimáticos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteasas ATP-Dependientes , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas Portadoras/genética , Endopeptidasas/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana Mitocondrial , Membranas Mitocondriales/enzimología , Proteínas Mitocondriales/genética , Complejos Multienzimáticos/química , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética
16.
Trends Parasitol ; 24(10): 428-31, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18715829

RESUMEN

Julius Lukes and co-workers evaluated the evolutionary origin of Trypanosoma equiperdum and Trypanosoma evansi, parasites that cause horse and camel diseases. Although similar to T. brucei, the sleeping-sickness parasite, these trypanosomes do not cycle through the tsetse fly and have been able to spread beyond Africa. Transmission occurs sexually, or via blood-sucking flies or vampire bats. They concluded that these parasites, which resemble yeast petite mutants, are T. brucei sub-species, which have evolved recently through changes in mitochondrial DNA.


Asunto(s)
Adaptación Fisiológica/genética , ADN de Cinetoplasto/genética , Potencial de la Membrana Mitocondrial/fisiología , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/fisiología , Animales , ADN Mitocondrial , Genes Protozoarios , Mutación
17.
Cell ; 134(3): 439-50, 2008 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-18692467

RESUMEN

Protein translocation across the mitochondrial inner membrane is mediated by the TIM23 complex. While its central component, Tim23, is believed to form a protein-conducting channel, the regions of this subunit that face the imported protein are unknown. To examine Tim23 structure and environment in intact membranes at high resolution, various derivatives, each with a single, environment-sensitive fluorescent probe positioned at a specific site, were assembled into functional TIM23 complexes in active mitochondria and analyzed by multiple spectral techniques. Probes placed sequentially throughout a transmembrane region that was identified by crosslinking as part of the protein-conducting channel revealed an alpha helix in an amphipathic environment. Probes on the aqueous-facing helical surface specifically underwent spectral changes during protein import, and their accessibility to hydrophilic quenching agents is considered in terms of channel gating. This approach has therefore provided an unprecedented view of a translocon channel structure in an intact, fully operational, membrane-embedded complex.


Asunto(s)
Proteínas de Transporte de Membrana/química , Membranas Mitocondriales/química , Membranas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Espectrometría de Fluorescencia/métodos , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/química , Mitocondrias/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/metabolismo , Complejos Multiproteicos/química , Estructura Secundaria de Proteína , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Mol Biol Cell ; 19(1): 159-70, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17959826

RESUMEN

Tim23p is an essential channel-forming component of the multisubunit TIM23 complex of the mitochondrial inner membrane that mediates protein import. Radiolabeled Tim23p monocysteine mutants were imported in vitro, incorporated into functional TIM23 complexes, and subjected to chemical cross-linking. Three regions of proximity between Tim23p and other subunits of the TIM23 complex were identified: Tim17p and the first transmembrane segment of Tim23p; Tim50p and the C-terminal end of the Tim23p hydrophilic region; and the entire hydrophilic domains of Tim23p molecules. These regions of proximity reversibly change in response to changes in membrane potential across the inner membrane and also when a translocating substrate is trapped in the TIM23 complex. These structural changes reveal that the macromolecular arrangement within the TIM23 complex is dynamic and varies with the physiological state of the mitochondrion.


Asunto(s)
Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Subunidades de Proteína/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Reactivos de Enlaces Cruzados/farmacología , Inmunoprecipitación , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Modelos Biológicos , Proteínas Mutantes/metabolismo , Unión Proteica/efectos de los fármacos , Estructura Cuaternaria de Proteína , Transporte de Proteínas/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Especificidad por Sustrato/efectos de los fármacos
19.
J Biol Chem ; 283(7): 3799-807, 2008 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-18063580

RESUMEN

Precise targeting of mitochondrial precursor proteins to mitochondria requires receptor functions of Tom20, Tom22, and Tom70 on the mitochondrial surface. Tom20 is a major import receptor that recognizes preferentially mitochondrial presequences, and Tom70 is a specialized receptor that recognizes presequence-less inner membrane proteins. The cytosolic domain of Tom22 appears to function as a receptor in cooperation with Tom20, but how its substrate specificity differs from that of Tom20 remains unclear. To reveal possible differences in substrate specificities between Tom20 and Tom22, if any, we deleted the receptor domain of Tom20 or Tom22 in mitochondria in vitro by introducing cleavage sites for a tobacco etch virus protease between the receptor domains and transmembrane segments of Tom20 and Tom22. Then mitochondria without the receptor domain of Tom20 or Tom22 were analyzed for their abilities to import various mitochondrial precursor proteins targeted to different mitochondrial subcompartments in vitro. The effects of deletion of the receptor domains on the import of different mitochondrial proteins for different import pathways were quite similar between Tom20 and Tom22. Therefore Tom20 and Tom22 are apparently involved in the same step or sequential steps along the same pathway of targeting signal recognition in import.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Secuencia de Bases , Cartilla de ADN , Endopeptidasas/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana Mitocondrial , Transporte de Proteínas , Receptores Citoplasmáticos y Nucleares/química , Proteínas de Saccharomyces cerevisiae/química
20.
Trends Cell Biol ; 17(11): 563-9, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17959383

RESUMEN

In many organisms, ranging from yeast to humans, mitochondria fuse and divide to change their morphology in response to a multitude of signals. During the past decade, work using yeast and mammalian cells has identified much of the machinery required for fusion and division, including the dynamin-related GTPases--mitofusins (Fzo1p in yeast) and OPA1 (Mgm1p in yeast) for fusion and Drp1 (Dnm1p) for division. However, the mechanisms by which cells regulate these dynamic processes have remained largely unknown. Recent studies have uncovered regulatory mechanisms that control the activity, assembly, distribution and stability of the key components for mitochondrial fusion and division. In this review, we discuss how mitochondrial dynamics are controlled and how these events are coordinated with cell growth, mitosis, apoptosis and human diseases.


Asunto(s)
Genes Mitocondriales/fisiología , Fusión de Membrana/fisiología , Membranas Mitocondriales/fisiología , Proteínas Mitocondriales/fisiología , Animales , Humanos , Fusión de Membrana/genética , Membranas Mitocondriales/química , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...