Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(6): e0304106, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38870112

RESUMEN

Air pollution causes and exacerbates allergic diseases including asthma, allergic rhinitis, and atopic dermatitis. Precise prediction of the number of patients afflicted with these diseases and analysis of the environmental conditions that contribute to disease outbreaks play crucial roles in the effective management of hospital services. Therefore, this study aims to predict the daily number of patients with these allergic diseases and determine the impact of particulate matter (PM10) on each disease. To analyze the spatiotemporal correlations between allergic diseases (asthma, atopic dermatitis, and allergic rhinitis) and PM10 concentrations, we propose a multi-variable spatiotemporal graph convolutional network (MST-GCN)-based disease prediction model. Data on the number of patients were collected from the National Health Insurance Service from January 2013 to December 2017, and the PM10 data were collected from Airkorea during the same period. As a result, the proposed disease prediction model showed higher performance (R2 0.87) than the other deep-learning baseline methods. The synergic effect of spatial and temporal analyses improved the prediction performance of the number of patients. The prediction accuracies for allergic rhinitis, asthma, and atopic dermatitis achieved R2 scores of 0.96, 0.92, and 0.86, respectively. In the ablation study of environmental factors, PM10 improved the prediction accuracy by 10.13%, based on the R2 score.


Asunto(s)
Asma , Dermatitis Atópica , Material Particulado , Rinitis Alérgica , Humanos , Material Particulado/análisis , Material Particulado/efectos adversos , Asma/epidemiología , Rinitis Alérgica/epidemiología , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Análisis Espacio-Temporal , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/efectos adversos , Redes Neurales de la Computación , Hipersensibilidad/epidemiología
2.
Sensors (Basel) ; 23(8)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37112507

RESUMEN

Graphs are data structures that effectively represent relational data in the real world. Graph representation learning is a significant task since it could facilitate various downstream tasks, such as node classification, link prediction, etc. Graph representation learning aims to map graph entities to low-dimensional vectors while preserving graph structure and entity relationships. Over the decades, many models have been proposed for graph representation learning. This paper aims to show a comprehensive picture of graph representation learning models, including traditional and state-of-the-art models on various graphs in different geometric spaces. First, we begin with five types of graph embedding models: graph kernels, matrix factorization models, shallow models, deep-learning models, and non-Euclidean models. In addition, we also discuss graph transformer models and Gaussian embedding models. Second, we present practical applications of graph embedding models, from constructing graphs for specific domains to applying models to solve tasks. Finally, we discuss challenges for existing models and future research directions in detail. As a result, this paper provides a structured overview of the diversity of graph embedding models.

3.
Sci Rep ; 12(1): 19873, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36400803

RESUMEN

This study aimed to automatically classify live cells based on their cell type by analyzing the patterns of backscattered signals of cells with minimal effect on normal cell physiology and activity. Our previous studies have demonstrated that label-free acoustic sensing using high-frequency ultrasound at a high pulse repetition frequency (PRF) can capture and analyze a single object from a heterogeneous sample. However, eliminating possible errors in the manual setting and time-consuming processes when postprocessing integrated backscattering (IB) coefficients of backscattered signals is crucial. In this study, an automated cell-type classification system that combines a label-free acoustic sensing technique with deep learning-empowered artificial intelligence models is proposed. We applied an one-dimensional (1D) convolutional autoencoder to denoise the signals and conducted data augmentation based on Gaussian noise injection to enhance the robustness of the proposed classification system to noise. Subsequently, denoised backscattered signals were classified into specific cell types using convolutional neural network (CNN) models for three types of signal data representations, including 1D CNN models for waveform and frequency spectrum analysis and two-dimensional (2D) CNN models for spectrogram analysis. We evaluated the proposed system by classifying two types of cells (e.g., RBC and PNT1A) and two types of polystyrene microspheres by analyzing their backscattered signal patterns. We attempted to discover cell physical properties reflected on backscattered signals by controlling experimental variables, such as diameter and structure material. We further evaluated the effectiveness of the neural network models and efficacy of data representations by comparing their accuracy with that of baseline methods. Therefore, the proposed system can be used to classify reliably and precisely several cell types with different intrinsic physical properties for personalized cancer medicine development.


Asunto(s)
Inteligencia Artificial , Redes Neurales de la Computación , Acústica , Frecuencia Cardíaca , Ultrasonografía
4.
Sensors (Basel) ; 22(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36236280

RESUMEN

Solar irradiance forecasting is fundamental and essential for commercializing solar energy generation by overcoming output variability. Accurate forecasting depends on historical solar irradiance data, correlations between various meteorological variables (e.g., wind speed, humidity, and cloudiness), and influences between the weather contexts of spatially adjacent regions. However, existing studies have been limited to spatiotemporal analysis of a few variables, which have clear correlations with solar irradiance (e.g., sunshine duration), and do not attempt to establish atmospheric contextual information from a variety of meteorological variables. Therefore, this study proposes a novel solar irradiance forecasting model that represents atmospheric parameters observed from multiple stations as an attributed dynamic network and analyzes temporal changes in the network by extending existing spatio-temporal graph convolutional network (ST-GCN) models. By comparing the proposed model with existing models, we also investigated the contributions of (i) the spatial adjacency of the stations, (ii) temporal changes in the meteorological variables, and (iii) the variety of variables to the forecasting performance. We evaluated the performance of the proposed and existing models by predicting the hourly solar irradiance at observation stations in the Korean Peninsula. The experimental results showed that the three features are synergistic and have correlations that are difficult to establish using single-aspect analysis.

5.
Front Big Data ; 2: 39, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-33693362

RESUMEN

This study aims to validate whether the research performance of scholars correlates with how the scholars work together. Although the most straightforward approaches are centrality measurements or community detection, scholars mostly participate in multiple research groups and have different roles in each group. Thus, we concentrate on the subgraphs of co-authorship networks rooted in each scholar that cover (i) overlapping of the research groups on the scholar and (ii) roles of the scholar in the groups. This study calls the subgraphs "collaboration patterns" and applies subgraph embedding methods to discover and represent the collaboration patterns. Based on embedding the collaboration patterns, we have clustered scholars according to their collaboration styles. Then, we have examined whether scholars in each cluster have similar research performance, using the quantitative indicators. The coherence of the indicators cannot be solid proofs for validating the correlation between collaboration and performance. Nevertheless, the examination for clusters has exhibited that the collaboration patterns can reflect research styles of scholars. This information will enable us to predict the research performance more accurately since the research styles are more consistent and sustainable features of scholars than a few high-impact publications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...