Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Cancer ; 14(12): 2224-2235, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37576393

RESUMEN

The anti-proliferative effects of a newly developed N3-acyl-N5-aryl-3,5-diaminoindazole analog, KMU-191, have been previously evaluated in various cancer cells. However, the detailed anti-cancer molecular mechanisms of KMU-191 remain unknown. In this study, we investigated anti-cancer mechanisms by which KMU-191 regulates apoptosis-related genes in human clear cell renal cell carcinoma Caki cells. KMU-191 induced poly ADP-ribose polymerase cleavage and caspase-dependent apoptosis. In addition, KMU-191 induced down-regulation of the long form of cellular FADD-like IL-1ß-converting enzyme inhibitory protein (c-FLIP (L)) at the transcriptional level as well as that of long form of myeloid cell leukemia (Mcl-1 (L)) and B-cell lymphoma-extra large at the post-transcriptional level. Furthermore, KMU-191-induced apoptosis was closely associated with the Mcl-1 (L) down-regulation, but also partially associated with c-FLIP (L) down-regulation. In contrast, KMU-191 up-regulated p53, which is closely related to KMU-191-induced apoptosis. Although KMU-191 showed cytotoxicity of normal cells, it unusually did not induce cardiotoxicity. Taken together, these results suggest that a multi-target small molecule, N3-acyl-N5-aryl-3,5-diaminoindazole analog, KMU-191 is a potential anti-cancer agent that does not induce cardiotoxicity.

2.
BMJ Open ; 13(7): e069492, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37463820

RESUMEN

OBJECTIVES: Details regarding the management of COVID-19 in North Korea are unknown. The aim of this paper was to analyse media programmes in North Korea in order to understand public health measures and policies concerning COVID-19. SETTING: State-run news agency in North Korea. PRIMARY AND SECONDARY OUTCOME MEASURES: The classification of television programmes on COVID-19 broadcast in a state-run news agency, from January 2020 to May 2022, and public health measures introduced in the programmes. RESULTS: A total of 2671 programmes concerning COVID-19 were included in the study. These programmes provided detailed clinical guidelines to laypeople without medical expertise, including instructions for the usage of medication and preventive measures. An association between the media concern regarding COVID-19 and trade volume, as a proxy of border closure according to the concern of the authorities, provided hints to understand the priorities and aims of the authorities. CONCLUSIONS: The research outcomes provided significant insights into the effort to understand an impaired healthcare system and prevalent drug abuse behaviours in North Korea. Findings from further studies on the recently collected data might suggest additional implications on the North Korean policies on COVID-19.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Salud Pública , República Popular Democrática de Corea , Televisión , Atención a la Salud
3.
Life Sci ; 328: 121901, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37391067

RESUMEN

Stress is an inevitable part of life and, simultaneously, a stimulus that can trigger various neuropsychiatric disorders. Therefore, proper stress management is essential for maintaining a healthy life. In this study, we investigated the suppression of stress-induced cognitive deficit by controlling changes in synaptic plasticity caused by stress and confirmed that ethyl pyruvate (EP) has such an effect. Corticosterone, a stress hormone, suppresses long-term potentiation (LTP) in mouse acute hippocampal slices. EP blocked the LTP inhibitory effect of corticosterone by regulating GSK-3ß function. Restraint stress for 2 weeks increased the anxiety levels and caused the cognitive decline in the experimental animals. Administration of EP for 14 days did not affect the increase in anxiety caused by stress but improved cognitive decline caused by stress. In addition, the decrease in neurogenesis and synaptic function deficits in the hippocampus, which cause of cognitive decline due to stress, were improved by EP administration. These effects appear via regulation of Akt/GSK-3ß signaling, as in in vitro studies. These results suggest that EP prevents stress-induced cognitive decline through the modulation of Akt/GSK-3ß-mediated synaptic regulation.


Asunto(s)
Disfunción Cognitiva , Proteínas Proto-Oncogénicas c-akt , Ratones , Animales , Glucógeno Sintasa Quinasa 3 beta , Proteínas Proto-Oncogénicas c-akt/metabolismo , Corticosterona , Potenciación a Largo Plazo , Hipocampo/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Disfunción Cognitiva/prevención & control
4.
Biomater Res ; 27(1): 31, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37072836

RESUMEN

The use of mesenchymal stem cells (MSCs) for clinical purposes has skyrocketed in the past decade. Their multilineage differentiation potentials and immunomodulatory properties have facilitated the discovery of therapies for various illnesses. MSCs can be isolated from infant and adult tissue sources, which means they are easily available. However, this raises concerns because of the heterogeneity among the various MSC sources, which limits their effective use. Variabilities arise from donor- and tissue-specific differences, such as age, sex, and tissue source. Moreover, adult-sourced MSCs have limited proliferation potentials, which hinders their long-term therapeutic efficacy. These limitations of adult MSCs have prompted researchers to develop a new method for generating MSCs. Pluripotent stem cells (PSCs), such as embryonic stem cells and induced PSCs (iPSCs), can differentiate into various types of cells. Herein, a thorough review of the characteristics, functions, and clinical importance of MSCs is presented. The existing sources of MSCs, including adult- and infant-based sources, are compared. The most recent techniques for deriving MSCs from iPSCs, with a focus on biomaterial-assisted methods in both two- and three-dimensional culture systems, are listed and elaborated. Finally, several opportunities to develop improved methods for efficiently producing MSCs with the aim of advancing their various clinical applications are described.

5.
Biomed Pharmacother ; 161: 114511, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36913892

RESUMEN

Alzheimer's disease (AD) is a well-known neurodegenerative brain disease, and no curative treatment has yet been developed. The main symptoms include various brain lesions, caused by amyloid ß (Aß) aggregation, and cognitive decline. Therefore, it is believed that substances that control Aß will inhibit the onset of Alzheimer's disease and slow its progression. In this study, the effect of phyllodulcin, a major component of hydrangea, on Aß aggregation and brain pathology in an animal model of AD was studied. Phyllodulcin inhibited the aggregation of Aß and decomposed the pre-aggregated Aß in a concentration-dependent manner. In addition, it inhibited the cytotoxicity of Aß aggregates. Oral administration of phyllodulcin improved Aß-induced memory impairments in normal mice, reduced Aß deposition in the hippocampus, inhibited the activation of microglia and astrocytes, and improved synaptic plasticity in 5XFAD mice. These results suggest that phyllodulcin may be a candidate for the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Potenciación a Largo Plazo , Hipocampo , Ratones Transgénicos , Modelos Animales de Enfermedad
6.
Eur J Pharmacol ; 931: 175188, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35948162

RESUMEN

Alzheimer's disease (AD) is the most common degenerative disease and is indicative of dementia. The cerebral accumulation of amyloid ß (Aß), a crucial factor in AD, initiates synaptic and cognitive dysfunction. Therefore, the elevation of synaptic and cognitive functions may help manage dementia in AD. In this study, we suggest hyperoside as a synaptic function- and memory-enhancing agent. Hyperoside enhanced learning and memory in passive avoidance and object recognition tasks. Hyperoside facilitated synaptic long-term potentiation (LTP) in acute hippocampal slices. IEM-1460, a calcium-permeable amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (CP-AMPAR) antagonist, blocked the facilitation effect of hyperoside. Hyperoside also induced N-methyl-d-aspartate receptor (NMDAR)-independent LTP, which was blocked by IEM-1460, suggesting the involvement of CP-AMPARs in the synaptic effects of hyperoside-mediated LTP. PKI (a PKA inhibitor) or SQ22536 (adenylyl cyclase, an AC inhibitor) blocked hyperoside-facilitated LTP and hyperoside-induced NMDAR-independent LTP. Hyperoside-enhanced learning and memory were blocked by IEM-1460, suggesting the involvement of CP-AMPARs in the effect of hyperoside on learning and memory. Finally, hyperoside ameliorated Aß-induced memory impairments in an AD mouse model. These results suggest that hyperoside enhances learning and memory, and this may be due to the effect of CP-AMPARs.


Asunto(s)
Enfermedad de Alzheimer , Receptores AMPA , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/farmacología , Animales , Calcio/metabolismo , Hipocampo , Potenciación a Largo Plazo , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Ratones , Quercetina/análogos & derivados , Receptores AMPA/metabolismo , Sinapsis
7.
J Tissue Eng ; 13: 20417314221116754, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35983547

RESUMEN

Bone growth occurs in the epiphyseal growth plate (EGP) and epiphyseal growth plate cells (EGPCs) exist in EGP. EGPCs, including skeletal stem cells (SSCs), are cells that induce bone growth and development through endochondral ossification. Recently, the superiority of bone regeneration through endochondral ossification has been reported. Our study compared EGPCs with bone marrow-derived mesenchymal stem cells (BM-MSCs) and suggested the therapeutic potential of new bone regeneration. In this study, we analyzed the characteristics between EGPCs and BM-MSCs based on morphological characteristics and molecular profiles. EGPCs expressed chondrogenic and osteogenic markers higher than BM-MSCs. Additionally, in co-culture with BM-MSCs, EGPCs induced an increase in chondrogenic, osteogenic, and hypertrophic markers of BM-MSCs. Finally, EGPCs induced higher bone regeneration than BM-MSCs in the osteoporosis model. Overall, we suggest the possibility of EGPCs as cell therapy for effective bone regeneration.

8.
Biomed Pharmacother ; 148: 112763, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35240526

RESUMEN

Alzheimer's disease (AD) is caused by various pathological mechanisms; therefore, it is necessary to develop drugs that simultaneously act on multiple targets. In this study, we investigated the effects of eugenitol, which has anti-amyloid ß (Aß) and anti-neuroinflammatory effects, in an AD mouse model. We found that eugenitol potently inhibited Aß plaque and oligomer formation. Moreover, eugenitol dissociated the preformed Aß plaques and reduced Aß-induced nero2a cell death. An in silico docking simulation study showed that eugenitol may interact with Aß1-42 monomers and fibrils. Eugenitol showed radical scavenging effects and potently reduced the release of proinflammatory cytokines from lipopolysaccharide-treated BV2 cells. Systemic administration of eugenitol blocked Aß aggregate-induced memory impairment in the Morris water maze test in a dose-dependent manner. In 5XFAD mice, prolonged administration of eugenitol ameliorated memory and hippocampal long-term potentiation impairment. Moreover, eugenitol significantly reduced Aß deposits and neuroinflammation in the hippocampus of 5XFAD mice. These results suggest that eugenitol, which has anti-Aß aggregation, Aß fibril dissociation, and anti-inflammatory effects, potently modulates AD-like pathologies in 5XFAD mice, and could be a promising candidate for AD therapy.


Asunto(s)
Péptidos beta-Amiloides , Trastornos de la Memoria , Enfermedades Neuroinflamatorias , Animales , Masculino , Ratones , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Citocinas/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Depuradores de Radicales Libres/metabolismo , Hipocampo/efectos de los fármacos , Trastornos de la Memoria/patología , Enfermedades Neuroinflamatorias/patología , Especies Reactivas de Oxígeno/metabolismo
9.
Antioxidants (Basel) ; 11(2)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35204117

RESUMEN

Stress is an important neurological input for successful life. However, chronic stress and stress hormones could be a cause of various neurological disorders including anxiety disorders. Therefore, there have been many efforts to find effective materials for curing stress-induced neurological disorders. In this study, we examined the effect of Hydrangea macrophylla (HM) on corticosterone-induced neurotoxicity, stress-induced anxiety in mice and suggested a possible active ingredient of HM. HM protected cortical neurons against neurotoxicity of corticosterone (CORT), a stress hormone. HM also blocked CORT-induced hippocampal synaptic deficit via regulating Akt signaling. Oral administration of HM improved chronic restraint stress-induced anxiety in Elevated Plus maze test along with reduction of plasma corticosterone and TNF-α levels. Moreover, HM reduced stress-induced neuroinflammation and oxidative stress. Thunberginol C, an active ingredient of HM, also prevented CORT-induced neuronal cell death and restraint stress-induced anxiety. Moreover, thunberginol C reduced plasma TNF-α level and neuroinflammation and oxidative stress. Collectively, HM could be a good candidate for preventing stress-induced neurological disorders and thunberginol C may be an active ingredient of HM for this purpose.

10.
Biomed Pharmacother ; 147: 112663, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35093759

RESUMEN

Memory-enhancing agents have long been required for various reasons such as for obtaining a good score in a test in the young and for retaining memory in the aged. Although many studies have found that several natural products may be good candidates for memory enhancement, there is still a need for better agents. The present study investigated whether rubrofusarin, an active ingredient in Cassiae semen, enhances learning and memory in normal mice. Passive avoidance and Morris water maze tests were performed to determine the memory-enhancing ability of rubrofusarin. To investigate synaptic function, hippocampal long-term potentiation (LTP) was measured. Western blotting was performed to determine protein levels. To investigate neurite outgrowth, DCX immunohistochemistry and cell culture were utilised. Rubrofusarin (1, 3, 10, 30 mg/kg) enhanced memory in passive avoidance and Morris water maze tests. Moreover, rubrofusarin ameliorated scopolamine-induced memory impairment. In the rubrofusarin-treated group, high-frequency stimulation induced higher LTP in the hippocampal Schaffer-collateral pathway compared to the control group. The rubrofusarin-treated group showed a higher number of DCX-positive immature neurons with an increase in the length of dendrites compared to the control group in the hippocampal dentate gyrus region. In vitro experiments showed that rubrofusarin facilitated neurite outgrowth in neuro2a cells through extracellular signal-regulated kinase (ERK). Finally, we found that extracellular signal-regulated kinase (ERK) is required for rubrofusarin-induced enhancement of neurite outgrowth, learning and memory. These results demonstrate that rubrofusarin enhances learning and memory and neurite outgrowth, and these might need activation of ERK pathway.


Asunto(s)
Cognición/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/efectos de los fármacos , Proyección Neuronal/efectos de los fármacos , Pironas/farmacología , Animales , Técnicas de Cultivo de Célula , Relación Dosis-Respuesta a Droga , Hipocampo/efectos de los fármacos , Aprendizaje/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Memoria/efectos de los fármacos , Ratones , Pironas/administración & dosificación
11.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33805177

RESUMEN

Traditional Chinese medicines (TCMs) have been a rich source of novel drug discovery, and Cassia seed is one of the common TCMs with numerous biological effects. Based on the existing reports on neuroprotection by Cassia seed extract, the present study aims to search possible pharmacological targets behind the neuroprotective effects of the Cassia seeds by evaluating the functional effect of specific Cassia compounds on various G-protein-coupled receptors. Among the four test compounds (cassiaside, rubrofusarin gentiobioside, aurantio-obtusin, and 2-hydroxyemodin 1-methylether), only aurantio-obtusin demonstrated a specific V1AR antagonist effect (71.80 ± 6.0% inhibition at 100 µM) and yielded an IC50 value of 67.70 ± 2.41 µM. A molecular docking study predicted an additional interaction of the hydroxyl group at C6 and a methoxy group at C7 of aurantio-obtusin with the Ser341 residue as functional for the observed antagonist effect. In the transient brain ischemia/reperfusion injury C57BL/6 mice model, aurantio-obtusin attenuated the latency time that was reduced in the bilateral common carotid artery occlusion (BCCAO) groups. Likewise, compared to neuronal damage in the BCCAO groups, treatment with aurantio-obtusin (10 mg/kg, p.o.) significantly reduced the severity of damage in medial cornu ammonis 1 (mCA1), dorsal CA1, and cortex regions. Overall, the findings of this study highlight V1AR as a possible target of aurantio-obtusin for neuroprotection.


Asunto(s)
Antraquinonas/farmacología , Antagonistas de los Receptores de Hormonas Antidiuréticas/química , Fármacos Neuroprotectores/farmacología , Prosencéfalo/patología , Receptores de Vasopresinas/química , Animales , Antraquinonas/química , Estenosis Carotídea/metabolismo , Cassia/química , Cromonas/química , Emodina/análogos & derivados , Emodina/química , Éter/química , Glucósidos/química , Concentración 50 Inhibidora , Masculino , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Prosencéfalo/metabolismo , Semillas/química
12.
Biochem Pharmacol ; 184: 114366, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33310049

RESUMEN

Alzheimer's disease (AD) is one of the most prevalent neurodegenerative disorders characterized by memory deficits. Although no drug has given promising results, synaptic dysfunction-modulating agents might be considered potential candidates for alleviating this disorder. Pinoresinol, a lignan found in Forsythia suspensa, is a memory-enhancing agent with excitatory synaptic activation. In the present study, we tested whether pinoresinol reduces learning and memory and excitatory synaptic deficits in an amyloid ß (Aß)-induced AD-like mouse model. Pinoresinol enhanced hippocampal long-term potentiation (LTP) through calcium-permeable AMPA receptor, which was mediated by Akt activation. Moreover, pinoresinol ameliorated LTP deficits in amyloid ß (Aß)-treated hippocampal slices via Akt signaling. Oral administration of pinoresinol ameliorated Aß-induced memory deficits without sensory dysfunction. Moreover, AD-like pathology, including neuroinflammation and synaptic deficit, were ameliorated by pinoresinol administration. Collectively, pinoresinol may be a good candidate for AD therapy by modulating synaptic functions.


Asunto(s)
Furanos/farmacología , Hipocampo/efectos de los fármacos , Lignanos/farmacología , Trastornos de la Memoria/tratamiento farmacológico , Plasticidad Neuronal/efectos de los fármacos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/toxicidad , Animales , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Trastornos de la Memoria/etiología , Trastornos de la Memoria/patología , Ratones Endogámicos , Plasticidad Neuronal/fisiología , Fragmentos de Péptidos/toxicidad , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores AMPA/metabolismo
13.
Int J Mol Sci ; 21(24)2020 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-33322202

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease characterized by neurological dysfunction, including memory impairment, attributed to the accumulation of amyloid ß (Aß) in the brain. Although several studies reported possible mechanisms involved in Aß pathology, much remains unknown. Previous findings suggested that a protein regulated in development and DNA damage response 1 (REDD1), a stress-coping regulator, is an Aß-responsive gene involved in Aß cytotoxicity. However, we still do not know how Aß increases the level of REDD1 and whether REDD1 mediates Aß-induced synaptic dysfunction. To elucidate this, we examined the effect of Aß on REDD1-expression using acute hippocampal slices from mice, and the effect of REDD1 short hairpin RNA (shRNA) on Aß-induced synaptic dysfunction. Lastly, we observed the effect of REDD1 shRNA on memory deficit in an AD-like mouse model. Through the experiments, we found that Aß-incubated acute hippocampal slices showed increased REDD1 levels. Moreover, Aß injection into the lateral ventricle increased REDD1 levels in the hippocampus. Anisomycin, but not actinomycin D, blocked Aß-induced increase in REDD1 levels in the acute hippocampal slices, suggesting that Aß may increase REDD1 translation rather than transcription. Aß activated Fyn/ERK/S6 cascade, and inhibitors for Fyn/ERK/S6 or mGluR5 blocked Aß-induced REDD1 upregulation. REDD1 inducer, a transcriptional activator, and Aß blocked synaptic plasticity in the acute hippocampal slices. REDD1 inducer inhibited mTOR/Akt signaling. REDD1 shRNA blocked Aß-induced synaptic deficits. REDD1 shRNA also blocked Aß-induced memory deficits in passive-avoidance and object-recognition tests. Collectively, these results demonstrate that REDD1 participates in Aß pathology and could be a target for AD therapy.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/farmacología , Hipocampo/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Trastornos de la Memoria/metabolismo , Sinapsis/metabolismo , Factores de Transcripción/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Anisomicina/farmacología , Dactinomicina/farmacología , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Masculino , Trastornos de la Memoria/genética , Trastornos de la Memoria/patología , Pruebas de Memoria y Aprendizaje , Ratones , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-fyn/metabolismo , ARN Interferente Pequeño , Receptor del Glutamato Metabotropico 5/antagonistas & inhibidores , Proteínas Quinasas S6 Ribosómicas/antagonistas & inhibidores , Proteínas Quinasas S6 Ribosómicas/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/genética , Sinapsis/patología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/genética , Regulación hacia Arriba
14.
Artículo en Inglés | MEDLINE | ID: mdl-33114677

RESUMEN

Many countries provide preventive dental care for children to reduce inequalities. In Korea, the registered dentists' program was implemented to promote oral health and prevent oral diseases in primary school students. This study aimed to evaluate the registered dentist program through the sealant utilization rate using national cohort data and to compare the socioeconomic gap of the cohorts by participation. The sample cohort data were obtained from the National Health Insurance Sharing Service (NHISS) in South Korea. The utilization of dental sealants was analyzed using the chi-square test according to the independent variables of each year. To identify the independent effects of participation in the registered dentists' program, a panel logistic regression analysis of the utilization of dental sealants was performed. The participants were 1.35 times more likely to have dental sealants than non-participants. The significance of income quintiles disappeared in the case groups. The gap became more obvious in the employees of the control group even after adjusting for all variables. Implementing oral health programs can alleviate inequality with a relative increase in utilization in vulnerable populations.


Asunto(s)
Caries Dental , Odontología/organización & administración , Selladores de Fosas y Fisuras , Factores Socioeconómicos , Distribución de Chi-Cuadrado , Niño , Caries Dental/epidemiología , Caries Dental/prevención & control , Humanos , Evaluación de Programas y Proyectos de Salud , República de Corea
15.
Front Plant Sci ; 11: 551, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32499801

RESUMEN

Leaf senescence is a developmental process designed for nutrient recycling and relocation to maximize growth competence and reproductive capacity of plants. Thus, plants integrate developmental and environmental signals to precisely control senescence. To genetically dissect the complex regulatory mechanism underlying leaf senescence, we identified an early leaf senescence mutant, rse1. RSE1 encodes a putative glycosyltransferase. Loss-of-function mutations in RSE1 resulted in precocious leaf yellowing and up-regulation of senescence marker genes, indicating enhanced leaf senescence. Transcriptome analysis revealed that salicylic acid (SA) and defense signaling cascades were up-regulated in rse1 prior to the onset of leaf senescence. We found that SA accumulation was significantly increased in rse1. The rse1 phenotypes are dependent on SA-INDUCTION DEFICIENT 2 (SID2), supporting a role of SA in accelerated leaf senescence in rse1. Furthermore, RSE1 protein was localized to the cell wall, implying a possible link between the cell wall and RSE1 function. Together, we show that RSE1 negatively modulates leaf senescence through an SID2-dependent SA signaling pathway.

16.
Int J Mol Sci ; 21(10)2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32414166

RESUMEN

The aim of this study was to examine whether rubrofusarin, an active ingredient of the Cassia species, has an antidepressive effect in chronic restraint stress (CRS) mouse model. Although acute treatment using rubrofusarin failed, chronic treatment using rubrofusarin ameliorated CRS-induced depressive symptoms. Rubrofusarin treatment significantly reduced the number of Fluoro-Jade B-positive cells and caspase-3 activation within the hippocampus of CRS-treated mice. Moreover, rubrofusarin treatment significantly increased the number of newborn neurons in the hippocampus of CRS-treated mice. CRS induced activation of glycogen synthase kinase-3ß and regulated development and DNA damage responses, and reductions in the extracellular-signal-regulated kinase pathway activity were also reversed by rubrofusarin treatment. Microglial activation and inflammasome markers, including nod-like receptor family pyrin domain containing 3 and adaptor protein apoptosis-associated speck-like protein containing CARD, which were induced by CRS, were ameliorated by rubrofusarin. Synaptic plasticity dysfunction within the hippocampus was also rescued by rubrofusarin treatment. Within in vitro experiments, rubrofusarin blocked corticosterone-induced long-term potentiation impairments. These were blocked by LY294002, which is an Akt inhibitor. Finally, we found that the antidepressant effects of rubrofusarin were blocked by an intracerebroventricular injection of LY294002. These results suggest that rubrofusarin ameliorated CRS-induced depressive symptoms through PI3K/Akt signaling.


Asunto(s)
Depresión/tratamiento farmacológico , Neuronas/efectos de los fármacos , Pironas/farmacología , Estrés Psicológico/tratamiento farmacológico , Animales , Antidepresivos/farmacología , Depresión/patología , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Ratones , Neuronas/patología , Restricción Física/psicología , Transducción de Señal/efectos de los fármacos , Estrés Psicológico/patología
17.
Food Chem Toxicol ; 136: 111011, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31790773

RESUMEN

Neurite outgrowth is important process in synaptic formation and neuronal development. Many previous studies reported that natural compounds as well as neurotrophins induce neurite outgrowth through various signaling pathways. In this study, we tested the effect of cryptotanshinone (CPT), a constituent of Salvia miltiorrhiza Bunge, on neurite outgrowth using neuro2a cell line, a mouse neuroblastoma cell line. And then, we examined the effect of CPT on learning and memory. We first found that CPT facilitated neurite outgrowth in a concentration-dependent manner. Although CPT induced MTT reduction, CPT did not induce LDH release. Moreover, CPT suppressed cell proliferation. CPT increased ERK1/2 phosphorylation and ERK1/2 inhibitor blocked CPT-facilitated neurite outgrowth. CPT also enhanced learning and memory without affecting basal sensory conditions and increased ERK1/2 phosphorylation in the hippocampus in a dose-dependent manner. These results demonstrate that CPT facilitates neurite outgrowth and enhances learning and memory, which may be mediated by facilitating ERK1/2 signal.


Asunto(s)
Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Memoria/efectos de los fármacos , Proyección Neuronal/efectos de los fármacos , Fenantrenos/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Hipocampo/metabolismo , Aprendizaje/efectos de los fármacos , Masculino , Ratones , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos
18.
Biomol Ther (Seoul) ; 28(2): 131-136, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31791115

RESUMEN

Hippocampal synaptic dysfunction is a hallmark of Alzheimer's disease (AD). Many agents regulating hippocampal synaptic plasticity show an ameliorative effect on AD pathology, making them potential candidates for AD therapy. In the present study, we investigated spinosin as a regulating agent of synaptic plasticity in AD. Spinosin attenuated amyloid ß (Aß)-induced long-term potentiation (LTP) impairment, and improved plasmin activity and protein level in the hippocampi of 5XFAD mice, a transgenic AD mouse model. Moreover, the effect of spinosin on hippocampal LTP in 5XFAD mice was prevented by 6-aminocaproic acid, a plasmin inhibitor. These results suggest that spinosin improves synaptic function in the AD hippocampus by regulating plasmin activity.

19.
Nat Plants ; 5(12): 1273-1282, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31740770

RESUMEN

RNA quality control (RQC) and post-transcriptional gene silencing (PTGS) target and degrade aberrant endogenous RNAs and foreign RNAs, contributing to homeostasis of cellular RNAs. In plants, RQC and PTGS compete for foreign and selected endogenous RNAs; however, little is known about the mechanism interconnecting the two pathways. Using a reporter system designed for monitoring PTGS, we revealed that the 26S proteasome subunit RPT2a enhances transgene PTGS by promoting the accumulation of transgene-derived short interfering RNAs without affecting their biogenesis. RPT2a physically associated with a subset of RQC components and downregulated the protein level. Overexpression of the RQC components interfered with transgene silencing, and impairment of the RQC machinery reinforced transgene PTGS attenuated by rpt2a. Overall, we demonstrate that the 26S proteasome subunit RPT2a promotes PTGS by repressing the RQC machinery to control foreign RNAs.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Interferencia de ARN , ARN de Planta/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Complejo de la Endopetidasa Proteasomal/genética , ARN de Planta/metabolismo , Transgenes
20.
Neurochem Int ; 131: 104579, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31614166

RESUMEN

Neurite outgrowth is the differentiation process by which neurons establish synapses. In the dentate gyrus of the hippocampus, new neurons are constantly produced and undergo neurite outgrowth to form synapses, and this process is involved in cognitive ability. Therefore, if an agent could modulate neurite outgrowth, it could potentially be developed as a compound for modulating cognitive ability. In this study, we examined whether coniferaldehyde, a natural compound, regulates neurite outgrowth in Neuro2a cells. We ascertained morphological changes and measured the percentage of neurite-bearing cells and neurite lengths. Coniferaldehyde significantly increased the percentage of neurite-bearing cells, and the length of neurites in a concentration-dependent manner, without inducing cell death. We then have identified that, coniferaldehyde activates the extracellular signals-regulated Kinase 1 and 2 (ERK1/2), and further noted that, U0126, an ERK1/2 inhibitor, blocks coniferaldehyde-facilitated neurite outgrowth. Moreover, Subchronic administration of CA enhanced learning and memory, and increased neurite length of newborn neurons in the hippocampus. These results suggest that coniferaldehyde induces neurite outgrowth by a process possibly mediated by ERK1/2 signaling and enhances learning and memory.


Asunto(s)
Acroleína/análogos & derivados , Inhibidores Enzimáticos/farmacología , Neuritas/efectos de los fármacos , Neuroblastoma/tratamiento farmacológico , Acroleína/farmacología , Animales , Reacción de Prevención/efectos de los fármacos , Butadienos/farmacología , Línea Celular Tumoral , Giro Dentado/efectos de los fármacos , Giro Dentado/patología , Aprendizaje/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Memoria/efectos de los fármacos , Ratones , Neuritas/patología , Neuroblastoma/patología , Nitrilos/farmacología , Nootrópicos/farmacología , Sinapsis/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA