Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(20): 26580-26589, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38733565

RESUMEN

Cellulose nanocrystals (CNCs) are currently of great interest for many applications, such as energy storage and nanocomposites, because of their natural abundance. A number of carbonization studies have reported abnormal graphitization behavior of CNCs, although cellulose is generally known as a precursor for hard carbon (nongraphitizable carbon). Herein, we report a spray-freeze-drying (SFD) method for CNCs and a subsequent carbonization study to ascertain the difference in the structural development between the amorphous and crystalline phases. The morphological observation by high-resolution transmission electron microscopy of the carbonized SFD-CNC clearly shows that the amorphous and crystalline phases of CNC are attributed to the formation of hard and soft carbon, respectively. The results of a reactive molecular dynamics (RMD) study also show that the amorphous cellulose phase leads to the formation of fewer carbon ring structures, indicative of hard carbon. In contrast, the pristine crystalline cellulose phase has a higher density and thermal stability, resulting in limited molecular relaxation and the formation of a highly crystalline graphitic structure (soft carbon).

2.
Nat Commun ; 12(1): 4437, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34290251

RESUMEN

Microscale lasers efficiently deliver coherent photons into small volumes for intracellular biosensors and all-photonic microprocessors. Such technologies have given rise to a compelling pursuit of ever-smaller and ever-more-efficient microlasers. Upconversion microlasers have great potential owing to their large anti-Stokes shifts but have lagged behind other microlasers due to their high pump power requirement for population inversion of multiphoton-excited states. Here, we demonstrate continuous-wave upconversion lasing at an ultralow lasing threshold (4.7 W cm-2) by adopting monolithic whispering-gallery-mode microspheres synthesized by laser-induced liquefaction of upconversion nanoparticles and subsequent rapid quenching ("liquid-quenching"). Liquid-quenching completely integrates upconversion nanoparticles to provide high pump-to-gain interaction with low intracavity losses for efficient lasing. Atomic-scale disorder in the liquid-quenched host matrix suppresses phonon-assisted energy back transfer to achieve efficient population inversion. Narrow laser lines were spectrally tuned by up to 3.56 nm by injection pump power and operation temperature adjustments. Our low-threshold, wavelength-tunable, and continuous-wave upconversion microlaser with a narrow linewidth represents the anti-Stokes-shift microlaser that is competitive against state-of-the-art Stokes-shift microlasers, which paves the way for high-resolution atomic spectroscopy, biomedical quantitative phase imaging, and high-speed optical communication via wavelength-division-multiplexing.

3.
Nat Commun ; 11(1): 456, 2020 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-31974360

RESUMEN

With a recent increase in interest in metal-gas batteries, the lithium-carbon dioxide cell has attracted considerable attention because of its extraordinary carbon dioxide-capture ability during the discharge process and its potential application as a power source for Mars exploration. However, owing to the stable lithium carbonate discharge product, the cell enables operation only at low current densities, which significantly limits the application of lithium-carbon dioxide batteries and effective carbon dioxide-capture cells. Here, we investigate a high-performance lithium-carbon dioxide cell using a quinary molten salt electrolyte and ruthenium nanoparticles on the carbon cathode. The nitrate-based molten salt electrolyte allows us to observe the enhanced carbon dioxide-capture rate and the reduced discharge-charge over-potential gap with that of conventional lithium-carbon dioxide cells. Furthermore, owing to the ruthernium catalyst, the cell sustains its performance over more than 300 cycles at a current density of 10.0 A g-1 and exhibits a peak power density of 33.4 mW cm-2.

4.
Adv Mater ; 30(46): e1803372, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30216565

RESUMEN

Replacing noble-metal-based oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) electrocatalysts is the key to developing efficient Zn-air batteries (ZABs). Here, a homogeneous ternary Ni46 Co40 Fe14 nanoalloy with a size distribution of 30-60 nm dispersed in a carbon matrix (denoted as C@NCF-900) as a highly efficient bifunctional electrocatalyst produced via supercritical reaction and subsequent heat treatment at 900 °C is reported. Among all the transition-metal-based electrocatalysts, the C@NCF-900 exhibits the highest ORR performance in terms of half-wave potential (0.93 V) in 0.1 m KOH. Moreover, C@NCF-900 exhibits negligible activity decay after 10 000 voltage cycles with minor reduction (0.006 V). In ZABs, C@NCF-900 outperforms the mixture of Pt/C 20 wt% and IrO2 , cycled over 100 h under 58% depth of discharge condition. Furthermore, density functional theory (DFT) calculations and in situ X-ray absorption spectroscopy strongly support the active sites and site-selective reaction as a plausible ORR/OER mechanism of C@NCF-900.

5.
Sci Rep ; 7(1): 1287, 2017 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-28455516

RESUMEN

We succeed in fabricating nearly straight nanopores in cellulose acetate (CA) polymers for use as battery gel separators by utilizing an inorganic hexahydrate (Ni(NO3)2·6H2O) complex and isostatic water pressure treatment. The continuous nanopores are generated when the polymer film is exposed to isostatic water pressure after complexing the nickel(II) nitrate hexahydrate (Ni(NO3)2·6H2O) with the CA. These results can be attributed to the manner in which the polymer chains are weakened because of the plasticization effect of the Ni(NO3)2·6H2O that is incorporated into the CA. Furthermore, we performed extensive molecular dynamics simulation for confirming the interaction between electrolyte and CA separator. The well controlled CA membrane after water pressure treatment enables fabrication of highly reliable cell by utilizing 2032-type coin cell structure. The resulting cell performance exhibits not only the effect of the physical morphology of CA separator, but also the chemical interaction of electrolyte with CA polymer which facilitates the Li-ion in the cell.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...