Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Ethnopharmacol ; 319(Pt 3): 117285, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37839769

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ulmus macrocarpa Hance (UmH) bark has been traditionally utilized for medicinal purposes. The bark extract of this plant has diverse health benefits, and its potential role in enhancing bone health is of distinct interest, particularly when considering the substantial health and economic implications of bone-related pathologies, such as osteoporosis. Despite the compelling theoretical implications of UmH bark in fortifying bone health, no definitive evidence at the in vivo level is currently available, thus highlighting the innovative and as-yet-unexplored potential of this field of study. AIM OF THE STUDY: Primarily, our study aims to conduct a meticulous analysis of the disparity in the concentration of active compounds in the UmH root bark (Umrb) and trunk bark (Umtb) extracts and confirm UmH bark's efficacy in enhancing bone health in vivo, illuminating the cellular mechanisms involved. MATERIALS AND METHODS: The Umrb and Umtb extracts were subjected to component analysis using high-performance liquid chromatography and then assessed for their inhibitory effects on osteoclast differentiation through the TRAP assay. An ovariectomized (OVX) mouse model replicates postmenopausal conditions commonly associated with osteoporosis. Micro-CT was used to analyze bone structure parameters, and enzyme-linked immunosorbent assay and staining were used to assess bone formation markers and osteoclast activity. Furthermore, this study investigated the impact of the extract on the expression of pivotal proteins and genes involved in bone formation and resorption using mouse bone marrow-derived macrophages (BMMs). RESULTS: The findings of our study reveal a significant discrepancy in the concentration of active constituents between Umrb and Umtb, establishing Umtb as a superior source for promoting bone health. I addition, a standardized pilot-scale procedure was conducted for credibility. The bone health benefits of Umtb were verified using an OVX model. This validation involved the assessment of various parameters, including BMD, BV/TV, and BS/TV, using micro-CT imaging. Additionally, the activation of osteoblasts was evaluated by Umtb by measuring specific factors such as ALP, OCN, OPG in blood samples and through IHC staining. In the same investigations, diminished levels of osteoclast differentiation factors, such as TRAP, NFATc1, were also observed. The observed patterns exhibited consistency in vitro BMM investigations. CONCLUSIONS: Through verification at both in vitro levels using BMMs and in vivo levels using the OVX-induced mouse model, our research demonstrates that Umtb is a more effective means of improving bone health in comparison to Umrb. These findings pave the way for developing health-functional foods or botanical drugs targeting osteoporosis and other bone-related disorders and enhance the prospects for future research extensions, including clinical studies, in extract applications.


Asunto(s)
Osteoporosis , Ulmus , Femenino , Humanos , Animales , Ratones , Osteoclastos , Corteza de la Planta , Osteoporosis/prevención & control , Modelos Animales de Enfermedad , Ovariectomía
2.
Sci Rep ; 13(1): 11102, 2023 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-37423923

RESUMEN

Ulmus macrocarpa Hance bark (UmHb) has been used as a traditional herbal medicine in East Asia for bone concern diseases for a long time. To find a suitable solvent, we, in this study, compared the efficacy of UmHb water extract and ethanol extract which can inhibit osteoclast differentiation. Compared with two ethanol extracts (70% and 100% respectively), hydrothermal extracts of UmHb more effectively inhibited receptor activators of nuclear factor κB ligand-induced osteoclast differentiation in murine bone marrow-derived macrophages. We identified for the first time that (2R,3R)-epicatechin-7-O-ß-D-apiofuranoside (E7A) is a specific active compound in UmHb hydrothermal extracts through using LC/MS, HPLC, and NMR techniques. In addition, we confirmed through TRAP assay, pit assay, and PCR assay that E7A is a key compound in inhibiting osteoclast differentiation. The optimized condition to obtain E7A-rich UmHb extract was 100 mL/g, 90 °C, pH 5, and 97 min. At this condition, the content of E7A was 26.05 ± 0.96 mg/g extract. Based on TRAP assay, pit assay, PCR, and western blot, the optimized extract of E7A-rich UmHb demonstrated a greater inhibition of osteoclast differentiation compared to unoptimized. These results suggest that E7A would be a good candidate for the prevention and treatment of osteoporosis-related diseases.


Asunto(s)
Catequina , Ulmus , Ratones , Animales , Osteoclastos , Catequina/farmacología , Corteza de la Planta , Extractos Vegetales/farmacología , Extractos Vegetales/química , Etanol/farmacología , Diferenciación Celular , Ligando RANK/farmacología
3.
ACS Omega ; 7(6): 4840-4849, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35187304

RESUMEN

The aim of this study was to isolate and identify chemical components with osteoclast differentiation inhibitory activity from Ulmus macrocarpa Hance bark. Spectroscopic analyses, including nuclear magnetic resonance (NMR) and electronic circular dichroism (ECD), resulted in the unequivocal elucidation of active compounds such as (2S)-naringenin-6-C-ß-d-glucopyranoside (1), (2R)-naringenin-6-C-ß-d-glucopyranoside (2), (2R,3S)-catechin-7-O-ß-d-xylopyranoside (3), (2R,3S)-catechin-7-O-ß-d-apiofuranoside (6), (2R,3R)-taxifolin-6-C-ß-d-glucopyranoside (7), and (2S,3S)-taxifolin-6-C-ß-d-glucopyranoside (8). Mechanistically, the compounds may exhibit osteoclast differentiation inhibitory activity via the downregulation of NFATc1, a master regulator involved in osteoclast formation. This is the first report of their inhibitory activities on the receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation in murine bone marrow-derived macrophages. These findings provide further scientific evidence for the rational application of the genus Ulmus for the amelioration or treatment of osteopenic diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA