Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(2): e2312159120, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38175862

RESUMEN

We address the challenge of acoustic simulations in three-dimensional (3D) virtual rooms with parametric source positions, which have applications in virtual/augmented reality, game audio, and spatial computing. The wave equation can fully describe wave phenomena such as diffraction and interference. However, conventional numerical discretization methods are computationally expensive when simulating hundreds of source and receiver positions, making simulations with parametric source positions impractical. To overcome this limitation, we propose using deep operator networks to approximate linear wave-equation operators. This enables the rapid prediction of sound propagation in realistic 3D acoustic scenes with parametric source positions, achieving millisecond-scale computations. By learning a compact surrogate model, we avoid the offline calculation and storage of impulse responses for all relevant source/listener pairs. Our experiments, including various complex scene geometries, show good agreement with reference solutions, with root mean squared errors ranging from 0.02 to 0.10 Pa. Notably, our method signifies a paradigm shift as-to our knowledge-no prior machine learning approach has achieved precise predictions of complete wave fields within realistic domains.

2.
J Acoust Soc Am ; 155(1): 94-97, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38174968

RESUMEN

Model order reduction techniques significantly reduce the computational time when performing accurate room acoustic simulations with numerical methods that inherently include all the wave phenomena. There is a clear trade-off between physical accuracy and acceleration, but how humans perceive these errors is unknown. This study aims to investigate physical error limit that does not induce perceptual differences. Various two-dimensional rooms and reverberation times are tested with a three-alternative forced-choice listening test. Results reveal that for the presented cases, the threshold stands between a relative root mean square error of 1% and 0.1%, where the reduced order model stimulus results in a statistically significant difference.

3.
J Acoust Soc Am ; 153(4): 2506, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37186149

RESUMEN

Quick simulations for iterative evaluations of multi-design variables and boundary conditions are essential to find the optimal acoustic conditions in building design. We propose to use the reduced basis method (RBM) for realistic room acoustic scenarios where the surfaces have inhomogeneous acoustic properties, which enables quick evaluations of changing absorption materials for different surfaces in room acoustic simulations. The RBM has shown its benefit to speed up room acoustic simulations by 3 orders of magnitude for uniform boundary conditions. This study investigates the RBM with two main focuses: (1) various source positions in diverse geometries, e.g., square, rectangular, L-shaped, and disproportionate room, (2) two-dimensional and three-dimensional (3D) inhomogeneous surface absorption by parameterizing numerous acoustic parameters of surfaces, e.g., the thickness of a porous material, cavity depth, switching between a frequency independent (e.g., hard surface) and frequency dependent boundary condition. Results of numerical experiments show speedups of more than 2 orders of magnitude compared to a high fidelity numerical solver in a 3D case where reverberation time varies within one just noticeable difference in all the frequency octave bands.

4.
J Acoust Soc Am ; 152(6): R11, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36586830

RESUMEN

The Reflections series takes a look back on historical articles from The Journal of the Acoustical Society of America that have had a significant impact on the science and practice of acoustics.


Asunto(s)
Acústica
5.
J Acoust Soc Am ; 152(2): 851, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36050185

RESUMEN

The use of model-based numerical simulations of wave propagation in rooms for engineering applications requires that acoustic conditions for multiple parameters are evaluated iteratively, which is computationally expensive. We present a reduced basis method (RBM) to achieve a computational cost reduction relative to a traditional full-order model (FOM) for wave-based room acoustic simulations with parametrized boundaries. The FOM solver is based on the spectral-element method; however, other numerical methods could be applied. The RBM reduces the computational burden by solving the problem in a low-dimensional subspace for parametrized frequency-independent and frequency-dependent boundary conditions. The problem is formulated in the Laplace domain, which ensures the stability of the reduced-order model (ROM). We study the potential of the proposed RBM in terms of computational efficiency, accuracy, and storage requirements, and we show that the RBM leads to 100-fold speedups for a two-dimensional case and 1000-fold speedups for a three-dimensional case with an upper frequency of 2 and 1 kHz, respectively. While the FOM simulations needed to construct the ROM are expensive, we demonstrate that the ROM has the potential of being 3 orders of magnitude faster than the FOM when four different boundary conditions are simulated per room surface.

6.
Trends Hear ; 25: 2331216520965029, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34551633

RESUMEN

The sound-field auditory steady-state response (ASSR) is a promising measure for the objective validation of hearing-aid fitting in patients who are unable to respond to behavioral testing reliably. To record the sound-field ASSR, the stimulus is reproduced through a loudspeaker placed in front of the patient. However, the reverberation and background noise of the measurement room could reduce the stimulus modulation used for eliciting the ASSR. As the ASSR level is heavily dependent on the stimulus modulation, any reduction due to room acoustics could affect the clinical viability of sound-field ASSR testing. This study investigated the effect of room acoustics on the level and detection rate of sound-field ASSR. The study also analyzed whether early decay time and an auditory-inspired relative modulation power model could be used to predict the changes in the recorded ASSR in rooms. A monaural auralization approach was used to measure sound-field ASSR via insert earphones. ASSR was measured for 15 normal-hearing adult subjects using narrow-band CE-Chirps® centered at the octave bands of 500, 1000, 2000, and 4000 Hz. These stimuli were convolved with simulated impulse responses of three rooms inspired by audiological testing rooms. The results showed a significant reduction of the ASSR level for the room conditions compared with the reference anechoic condition. Despite this reduction, the detection rates for the first harmonics of the ASSR were unaffected when sufficiently long recordings (up to 6 min) were made. Furthermore, the early decay time and relative modulation power appear to be useful predictors of the ASSR level in the measurement rooms.


Asunto(s)
Pruebas Auditivas , Sonido , Estimulación Acústica , Acústica , Adulto , Umbral Auditivo , Humanos
7.
JASA Express Lett ; 1(12): 122402, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-36154380

RESUMEN

Realistic sound is essential in virtual environments, such as computer games and mixed reality. Efficient and accurate numerical methods for pre-calculating acoustics have been developed over the last decade; however, pre-calculating acoustics makes handling dynamic scenes with moving sources challenging, requiring intractable memory storage. A physics-informed neural network (PINN) method in one dimension is presented, which learns a compact and efficient surrogate model with parameterized moving Gaussian sources and impedance boundaries and satisfies a system of coupled equations. The model shows relative mean errors below 2%/0.2 dB and proposes a first step in developing PINNs for realistic three-dimensional scenes.


Asunto(s)
Redes Neurales de la Computación , Sonido , Simulación por Computador , Impedancia Eléctrica , Física
8.
J Acoust Soc Am ; 148(5): 2851, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33261406

RESUMEN

This paper presents an equivalent fluid model (EFM) formulation in a three-dimensional time-domain discontinuous Galerkin finite element method framework for room acoustic simulations. Using the EFM allows for the modeling of the extended-reaction (ER) behavior of porous sound absorbers. The EFM is formulated in the numerical framework by using the method of auxiliary differential equations to account for the frequency dependent dissipation of the porous material. The formulation is validated analytically and an excellent agreement with the theory is found. Experimental validation for a single reflection case is also conducted, and it is shown that using the EFM improves the simulation accuracy when modeling a porous material backed by an air cavity as compared to using the local-reaction (LR) approximation. Last, a comparative study of different rooms with different porous absorbers is presented, using different boundary modeling techniques, namely, a LR approximation, a field-incidence (FI) approximation, or modeling the full ER behavior with the EFM. It is shown that using a LR or FI approximation leads to large and perceptually noticeable errors in simulated room acoustic parameters. The average T20 reverberation time error is 4.3 times the just-noticeable-difference (JND) threshold when using LR and 2.9 JND when using FI.

9.
J Acoust Soc Am ; 146(4): 2404, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31671980

RESUMEN

The acoustic properties of surfaces are commonly evaluated using samples of finite size, which generate edge diffraction effects that are often disregarded. This study makes use of sound scattering theory to characterize such finite samples. In a given sound field, the samples can be described by a unique complex directivity function called the far-field pattern. Numerical results show that the far-field pattern contains extensive information on the tested samples, including sound absorption and surface scattering, as well as scattering due to finiteness. In this paper, a method is introduced to estimate the far-field pattern of a finite sample. The method relies on measurements of the sound pressure and acoustic particle velocity in the near-field of the sample, and it makes use of the Helmholtz integral equation. The proposed technique is examined in an anechoic room where the sound field near the test sample is scanned with a three-dimensional sound intensity probe. The estimated far-field pattern is compared with numerical predictions up to 1 kHz.

10.
J Acoust Soc Am ; 146(3): 1641, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31590507

RESUMEN

This work investigates the use of the initial decay time to obtain the Sabine absorption coefficient from measurements conducted in a reverberation chamber. Due to non-uniform distribution of sound absorption in the test chamber, measured energy decay functions exhibit multiple slopes, which cannot be evaluated unambiguously using linear regression as prescribed in the current standard (ISO 354, International Organization for Standardization, Geneva, Switzerland, 2003). As an alternative, this study proposes a Bayesian framework that allows estimating multiple decay parameters, hence capturing more accurately the energy decay features. Measurements are carried out in a reverberation chamber with and without diffusing elements to investigate the influence of diffusers on the absorption coefficient and on the decay process. Measured absorption coefficients of a porous sample are compared to theoretical values estimated with a transfer matrix model. The results show that the Sabine absorption coefficient calculated using the shortest decay time agrees well with the size-corrected theoretical absorption coefficient.

11.
J Acoust Soc Am ; 145(6): 3299, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31255119

RESUMEN

This paper presents a wave-based numerical scheme based on a spectral element method, coupled with an implicit-explicit Runge-Kutta time stepping method, for simulating room acoustics in the time domain. The scheme has certain features which make it highly attractive for room acoustic simulations, namely (a) its low dispersion and dissipation properties due to a high-order spatio-temporal discretization; (b) a high degree of geometric flexibility, where adaptive, unstructured meshes with curvilinear mesh elements are supported; and (c) its suitability for parallel implementation on modern many-core computer hardware. A method for modelling locally reacting, frequency dependent impedance boundary conditions within the scheme is developed, in which the boundary impedance is mapped to a multipole rational function and formulated in differential form. Various numerical experiments are presented, which reveal the accuracy and cost-efficiency of the proposed numerical scheme.

12.
J Audiol Otol ; 23(2): 76-82, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30989997

RESUMEN

BACKGROUND AND OBJECTIVES: Noise levels and room acoustic parameters at a tertiary referral hospital, Seoul National University Hospital (SNUH) in Korea, are investigated. MATERIALS AND METHODS: Through a questionnaire, acoustically problematic rooms are identified. Noise levels in emergency rooms (ERs) and intensive care units (ICUs) are measured over about three days. Acoustically critical and problematic rooms in the otolaryngology department are measured including examination rooms, operating rooms, nurse stations, receptions, and patient rooms. RESULTS: The A-weighted equivalent noise level, LAeq, ranges from 54 to 56 dBA, which is at least 10 dB lower than the noise levels of 65 to 73 dBA measured in American ERs. In an ICU, the noise level for the first night was 66 dBA, which came down to 56 dBA for the next day. The noise levels during three different ear surgeries vary from 57 to 62 dBA, depending on the use of surgical drills and suctions. The noise levels in a patient room is found to be 47 dBA, while the nurse stations and the receptions have high noise levels up to 64 dBA. The reverberation times in an operation room, examination room, and single patient room are found to be below 0.6 s. CONCLUSIONS: At SNUH, the nurse stations and receptions were found to be quite noisy. The ERs were quieter than in the previous studies. The measured reverberation times seemed low enough but some other nurse stations and examination rooms were not satisfactory according to the questionnaire.

13.
J Acoust Soc Am ; 144(2): EL100, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30180673

RESUMEN

Both specific airflow resistance and air permeability can be used as a parameter to estimate the sound absorption of textiles. The measurement of specific airflow resistance is specified in ISO 9053 (Int. Standards Org., 1991), but it is known to be inaccurate for low specific airflow resistance. This paper compares the measured specific airflow resistance according to ISO 9053 and those calculated from air permeability according to ISO 9237 (Int. Standards Org., 1995). The sound absorption coefficients predicted by Pieren's model [R. Pieren, Textile Res. J. 82(9), 864-874 (2012)] are compared with measurements by the impedance tube method, which concludes that those predicted from the air permeability are more accurate than those from the measured specific airflow resistance for textiles.

14.
J Acoust Soc Am ; 143(4): 2514, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29716245

RESUMEN

This study proposes an experimental method for evaluating isotropy in enclosures, based on an analysis of the wavenumber spectrum in the spherical harmonics domain. The wavenumber spectrum, which results from expanding an arbitrary sound field into a plane-wave basis, is used to characterize the spatial properties of the observed sound field. Subsequently, the obtained wavenumber spectrum is expanded into a series of spherical harmonics, and the moments from this spherical expansion are used to characterize the isotropy of the wave field. The analytical framework is presented. The method is examined numerically and experimentally, based on array measurements in four chambers: two anechoic chambers (one with a single source and another with an array of 52 sources), a reverberation chamber, and the same reverberation chamber with a sample of absorbing material on the floor. The results indicate that the proposed methodology is suitable for assessing the isotropy of a sound field.

15.
Noise Health ; 19(89): 183-192, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28816205

RESUMEN

CONTEXT: Regulations for quiet urban areas are typically based on sound level limits alone. However, the nonacoustic context may be crucial for subjective soundscape quality. AIMS: This study aimed at comparing the role of sound level and nonacoustic context for subjective urban soundscape assessment in the presence of the full on-site context, the visual context only, and without context. MATERIALS AND METHODS: Soundscape quality was evaluated for three recreational urban spaces by using four subjective attributes: loudness, acceptance, stressfulness, and comfort. The sound level was measured at each site and simultaneous sound recordings were obtained. Participants answered questionnaires either on site or during laboratory listening tests, in which the sound recordings were presented with or without each site's visual context consisting of two pictures. They rated the four subjective attributes along with their preference toward eight sound sources. RESULTS: The sound level was found to be a good predictor of all subjective parameters in the laboratory, but not on site. Although all attributes were significantly correlated in the laboratory setting, they did not necessarily covary on site. Moreover, the availability of the visual context in the listening experiment had no significant effect on the ratings. The participants were overall more positive toward natural sound sources on site. CONCLUSION: The full immersion in the on-site nonacoustic context may be important when evaluating overall soundscape quality in urban recreational areas. Laboratory evaluations may not fully reflect how subjective loudness, acceptance, stressfulness, and comfort are affected by sound level.


Asunto(s)
Exposición a Riesgos Ambientales/análisis , Ruido , Parques Recreativos , Sonido , Percepción Auditiva , Femenino , Humanos , Masculino , Encuestas y Cuestionarios
16.
J Acoust Soc Am ; 141(6): 4115, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28618790

RESUMEN

A method is proposed to estimate the surface impedance of a large absorptive panel from free-field measurements with a spherical microphone array. The method relies on the reconstruction of the pressure and the particle velocity on the studied surface using an equivalent source method based on spherical array measurements. The sound field measured by the array is mainly composed of an incident and a reflected wave, so it can be represented as a spatially sparse problem. This makes it possible to use compressive sensing in order to enhance the resolution and the quality of the estimation. The results indicate an accurate reconstruction for angles of incidence between 0° and 60°, and between approximately 200 and 4000 Hz. Additionally, experimental challenges are discussed, such as the sample's finiteness at low frequencies and the estimation of the background noise.

17.
J Acoust Soc Am ; 141(3): 1711, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28372049

RESUMEN

A Bayesian analysis is applied to determine the flow resistivity of a porous sample and the influence of the test chamber based on measured Sabine absorption coefficient data. The Sabine absorption coefficient measured in a reverberation chamber according to ISO 354 is influenced by the test chamber significantly, whereas the flow resistivity is a rather reproducible material property, from which the absorptive characteristics can be calculated through reliable models. Using Sabine absorption coefficients measured in 13 European reverberation chambers, the maximum a posteriori and the uncertainty of the flow resistivity and the test chamber's influence are estimated. Inclusion of more than one chamber's absorption data helps the flow resistivity converge towards a reliable value with a standard deviation below 17%.

18.
J Acoust Soc Am ; 140(3): 1498, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27914397

RESUMEN

Fibrous absorbers can be installed with various air backing conditions to fulfil a given low frequency acoustic requirement. Since absorber manufacturers cannot provide the absorption coefficients for all possible mounting conditions, acousticians have difficulties knowing the absorption characteristics of their own configurations. This study aims to predict the absorption coefficient for various mounting conditions from a single measurement of an arbitrary mounting condition by extracting the air flow resistivity of the test specimen and the frequency-dependent effect of the chamber on the measured absorption coefficients. With two homogeneous fibrous absorbers, the predicted absorption coefficients agree well with the measurements.

19.
J Acoust Soc Am ; 139(5): 2833, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27250175

RESUMEN

This study presents a kurtosis analysis of room impulse responses as a potential room diffuseness measure. The early part of an impulse response contains a direct sound and strong reflections. As these reflections are sparse and strong, the sound field is unlikely to be diffuse. Such deterministic reflections are extreme events, which prevent the pressure samples from being distributed Gaussianly, leading to a high kurtosis. This indicates that the kurtosis can be used as a diffuseness measure. Two rooms are analyzed. A non-uniform surface absorption distribution tends to increase the kurtosis significantly in a small room. A full scale reverberation chamber is tested with different diffuser settings, which shows that the kurtosis calculated from broadband impulse responses from 125 Hz to 4 kHz has a good correlation with the Sabine absorption coefficient according to ISO 354 (International Organization for Standardization, Geneva, Switzerland, 2003).

20.
J Acoust Soc Am ; 139(3): 1241-51, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27036260

RESUMEN

Amplitude modulation (AM) may be an important factor for the perceived annoyance of wind turbine noise (WTN). Two AM types, typically referred to as "normal AM" (NAM) and "other AM" (OAM), characterize WTN AM, OAM corresponding to having intermittent periods with larger AM depth in lower frequency regions than NAM. The extent to which AM depth, frequency, and type affect WTN annoyance remains uncertain. Moreover, the temporal variations of WTN AM have often not been considered. Here, realistic stimuli accounting for such temporal variations were synthesized such that AM depth, frequency, and type, while determined from real on-site recordings, could be varied systematically. Listening tests with both original and synthesized stimuli showed that a reduction in mean AM depth across the spectrum led to a significant decrease in annoyance. When the spectrotemporal characteristics of the original far-field stimuli and the temporal AM variations were taken into account, the effect of AM frequency remained limited and the presence of intermittent OAM periods did not affect annoyance. These findings suggest that, at a given overall level, the AM depth of NAM periods is the most crucial AM parameter for WTN annoyance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...