Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Med Phys ; 48(10): 5593-5610, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34418109

RESUMEN

PURPOSE: Megavoltage computed tomography (MVCT) offers an opportunity for adaptive helical tomotherapy. However, high noise and reduced contrast in the MVCT images due to a decrease in the imaging dose to patients limits its usability. Therefore, we propose an algorithm to improve the image quality of MVCT. METHODS: The proposed algorithm generates kilovoltage CT (kVCT)-like images from MVCT images using a cycle-consistency generative adversarial network (cycleGAN)-based image synthesis model. Data augmentation using an affine transformation was applied to the training data to overcome the lack of data diversity in the network training. The mean absolute error (MAE), root-mean-square error (RMSE), peak signal-to-noise ratio (PSNR), and structural similarity index measure (SSIM) were used to quantify the correction accuracy of the images generated by the proposed algorithm. The proposed method was validated by comparing the images generated with those obtained from conventional and deep learning-based image processing method through non-augmented datasets. RESULTS: The average MAE, RMSE, PSNR, and SSIM values were 18.91 HU, 69.35 HU, 32.73 dB, and 95.48 using the proposed method, respectively, whereas cycleGAN with non-augmented data showed inferior results (19.88 HU, 70.55 HU, 32.62 dB, 95.19, respectively). The voxel values of the image obtained by the proposed method also indicated similar distributions to those of the kVCT image. The dose-volume histogram of the proposed method was also similar to that of electron density corrected MVCT. CONCLUSIONS: The proposed algorithm generates synthetic kVCT images from MVCT images using cycleGAN with small patient datasets. The image quality achieved by the proposed method was correspondingly improved to the level of a kVCT image while maintaining the anatomical structure of an MVCT image. The evaluation of dosimetric effectiveness of the proposed method indicates the applicability of accurate treatment planning in adaptive radiation therapy.


Asunto(s)
Radioterapia de Intensidad Modulada , Tomografía Computarizada de Haz Cónico , Humanos , Procesamiento de Imagen Asistido por Computador , Planificación de la Radioterapia Asistida por Computador , Relación Señal-Ruido , Tomografía Computarizada por Rayos X
2.
Cancers (Basel) ; 12(8)2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32823939

RESUMEN

This study aimed to investigate the performance of a deep learning-based survival-prediction model, which predicts the overall survival (OS) time of glioblastoma patients who have received surgery followed by concurrent chemoradiotherapy (CCRT). The medical records of glioblastoma patients who had received surgery and CCRT between January 2011 and December 2017 were retrospectively reviewed. Based on our inclusion criteria, 118 patients were selected and semi-randomly allocated to training and test datasets (3:1 ratio, respectively). A convolutional neural network-based deep learning model was trained with magnetic resonance imaging (MRI) data and clinical profiles to predict OS. The MRI was reconstructed by using four pulse sequences (22 slices) and nine images were selected based on the longest slice of glioblastoma by a physician for each pulse sequence. The clinical profiles consist of personal, genetic, and treatment factors. The concordance index (C-index) and integrated area under the curve (iAUC) of the time-dependent area-under-the-curve curves of each model were calculated to evaluate the performance of the survival-prediction models. The model that incorporated clinical and radiomic features showed a higher C-index (0.768 (95% confidence interval (CI): 0.759, 0.776)) and iAUC (0.790 (95% CI: 0.783, 0.797)) than the model using clinical features alone (C-index = 0.693 (95% CI: 0.685, 0.701); iAUC = 0.723 (95% CI: 0.716, 0.731)) and the model using radiomic features alone (C-index = 0.590 (95% CI: 0.579, 0.600); iAUC = 0.614 (95% CI: 0.607, 0.621)). These improvements to the C-indexes and iAUCs were validated using the 1000-times bootstrapping method; all were statistically significant (p < 0.001). This study suggests the synergistic benefits of using both clinical and radiomic parameters. Furthermore, it indicates the potential of multi-parametric deep learning models for the survival prediction of glioblastoma patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...