Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 264, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238311

RESUMEN

Alzheimer's disease (AD) is characterized by progressive neurodegeneration, but the specific events that cause cell death remain poorly understood. Death Induced by Survival gene Elimination (DISE) is a cell death mechanism mediated by short (s) RNAs acting through the RNA-induced silencing complex (RISC). DISE is thus a form of RNA interference, in which G-rich 6mer seed sequences in the sRNAs (position 2-7) target hundreds of C-rich 6mer seed matches in genes essential for cell survival, resulting in the activation of cell death pathways. Here, using Argonaute precipitation and RNAseq (Ago-RP-Seq), we analyze RISC-bound sRNAs to quantify 6mer seed toxicity in several model systems. In mouse AD models and aging brain, in induced pluripotent stem cell-derived neurons from AD patients, and in cells exposed to Aß42 oligomers, RISC-bound sRNAs show a shift to more toxic 6mer seeds compared to controls. In contrast, in brains of "SuperAgers", humans over age 80 who have superior memory performance, RISC-bound sRNAs are shifted to more nontoxic 6mer seeds. Cells depleted of nontoxic sRNAs are sensitized to Aß42-induced cell death, and reintroducing nontoxic RNAs is protective. Altogether, the correlation between DISE and Aß42 toxicity suggests that increasing the levels of nontoxic miRNAs in the brain or blocking the activity of toxic RISC-bound sRNAs could ameliorate neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Ratones , Animales , Humanos , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , MicroARNs/genética , Complejo Silenciador Inducido por ARN/genética , Interferencia de ARN , Envejecimiento/genética , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/toxicidad
2.
Cell Death Dis ; 13(12): 1078, 2022 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-36585400

RESUMEN

Extended CAG trinucleotide repeats (TNR) in the genes huntingtin (HTT) and androgen receptor (AR) are the cause of two progressive neurodegenerative disorders: Huntington's disease (HD) and Spinal and Bulbar Muscular Atrophy (SBMA), respectively. Anyone who inherits the mutant gene in the complete penetrance range (>39 repeats for HD and 44 for SBMA) will develop the disease. An inverse correlation exists between the length of the CAG repeat and the severity and age of onset of the diseases. Growing evidence suggests that it is the length of uninterrupted CAG repeats in the mRNA rather than the length of poly glutamine (polyQ) in mutant (m)HTT protein that determines disease progression. One variant of mHTT (loss of inhibition; LOI) causes a 25 year earlier onset of HD when compared to a reference sequence, despite both coding for a protein that contains an identical number of glutamines. Short 21-22 nt CAG repeat (sCAGs)-containing RNAs can cause disease through RNA interference (RNAi). RNA hairpins (HPs) forming at the CAG TNRs are stabilized by adjacent CCG (in HD) or CUG repeats (in SBMA) making them better substrates for Dicer, the enzyme that processes CAG HPs into sCAGs. We now show that cells deficient in Dicer or unable to mediate RNAi are resistant to the toxicity of the HTT and AR derived HPs. Expression of a small HP that mimics the HD LOI variant is more stable and more toxic than a reference HP. We report that the LOI HP is processed by Dicer, loaded into the RISC more efficiently, and gives rise to a higher quantity of RISC-bound 22 nt sCAGs. Our data support the notion that RNAi contributes to the cell death seen in HD and SBMA and provide an explanation for the dramatically reduced onset of disease in HD patients that carry the LOI variant.


Asunto(s)
Enfermedad de Huntington , Expansión de Repetición de Trinucleótido , Humanos , Interferencia de ARN , Expansión de Repetición de Trinucleótido/genética , Repeticiones de Trinucleótidos/genética , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , ARN Mensajero/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
3.
J Exp Med ; 219(1)2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34751735

RESUMEN

The interaction between neutrophils and endothelial cells is critical for the pathogenesis of vascular inflammation. However, the regulation of neutrophil adhesive function remains not fully understood. Intravital microscopy demonstrates that neutrophil DREAM promotes neutrophil recruitment to sites of inflammation induced by TNF-α but not MIP-2 or fMLP. We observe that neutrophil DREAM represses expression of A20, a negative regulator of NF-κB activity, and enhances expression of pro-inflammatory molecules and phosphorylation of IκB kinase (IKK) after TNF-α stimulation. Studies using genetic and pharmacologic approaches reveal that DREAM deficiency and IKKß inhibition significantly diminish the ligand-binding activity of ß2 integrins in TNF-α-stimulated neutrophils or neutrophil-like HL-60 cells. Neutrophil DREAM promotes degranulation through IKKß-mediated SNAP-23 phosphorylation. Using sickle cell disease mice lacking DREAM, we show that hematopoietic DREAM promotes vaso-occlusive events in microvessels following TNF-α challenge. Our study provides evidence that targeting DREAM might be a novel therapeutic strategy to reduce excessive neutrophil recruitment in inflammatory diseases.


Asunto(s)
Inflamación/genética , Proteínas de Interacción con los Canales Kv/genética , Microvasos/metabolismo , Infiltración Neutrófila/genética , Neutrófilos/metabolismo , Proteínas Represoras/genética , Animales , Adhesión Celular/efectos de los fármacos , Regulación de la Expresión Génica , Células HL-60 , Humanos , Quinasa I-kappa B/metabolismo , Inflamación/metabolismo , Proteínas de Interacción con los Canales Kv/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Microvasos/patología , FN-kappa B/metabolismo , Infiltración Neutrófila/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Fosforilación/efectos de los fármacos , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/genética , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
4.
Haematologica ; 105(10): 2407-2419, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33054081

RESUMEN

Adherent neutrophils on vascular endothelium positively contribute to cell-cell aggregation and vaso-occlusion in sickle cell disease. In the present study, we demonstrated that pyridoxamine, a derivative of vitamin B6, might be a therapeutic agent to alleviate intravascular cell-cell aggregation in sickle cell disease. Using real-time intravital microscopy, we found that one oral administration of pyridoxamine dose-dependently increased the rolling influx of neutrophils and reduced neutrophil adhesion to endothelial cells in cremaster microvessels of sickle cell disease mice challenged with hypoxia-reoxygenation. Short-term treatment also mitigated neutrophil-endothelial cell and neutrophil-platelet interactions in the microvessels and improved the survival of sickle cell disease mice challenged with tumor necrosis factor-α. The inhibitory effects of pyridoxamine on intravascular cell-cell interactions were potentiated by co-treatment with hydroxyurea. We observed that long-term (5.5 months) oral treatment with pyridoxamine significantly diminished the adhesive function of neutrophils and platelets and down-regulated the expression of E-selectin and intercellular adhesion molecule-1 on the vascular endothelium in tumor necrosis factor-α-challenged sickle cell disease mice. Ex vivo studies revealed that the surface amount of αMß2 integrin was significantly decreased in stimulated neutrophils isolated from sickle cell disease mice treated with pyridoxamine-containing water. Studies using platelets and neutrophils from sickle cell disease mice and patients suggested that treatment with pyridoxamine reduced the activation state of platelets and neutrophils. These results suggest that pyridoxamine may be a novel therapeutic and a supplement to hydroxyurea to prevent and treat vaco-occlusion events in sickle cell disease.


Asunto(s)
Anemia de Células Falciformes , Piridoxamina , Anemia de Células Falciformes/tratamiento farmacológico , Animales , Adhesión Celular , Comunicación Celular , Células Endoteliales , Endotelio Vascular , Humanos , Hidroxiurea , Ratones , Neutrófilos
5.
Circulation ; 139(10): 1300-1319, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30586735

RESUMEN

BACKGROUND: Platelet-neutrophil interactions contribute to vascular occlusion and tissue damage in thromboinflammatory disease. Platelet glycoprotein Ibα (GPIbα), a key receptor for the cell-cell interaction, is believed to be constitutively active for ligand binding. Here, we established the role of platelet-derived protein disulfide isomerase (PDI) in reducing the allosteric disulfide bonds in GPIbα and enhancing the ligand-binding activity under thromboinflammatory conditions. METHODS: Bioinformatic analysis identified 2 potential allosteric disulfide bonds in GPIbα. Agglutination assays, flow cytometry, surface plasmon resonance analysis, a protein-protein docking model, proximity ligation assays, and mass spectrometry were used to demonstrate a direct interaction between PDI and GPIbα and to determine a role for PDI in regulating GPIbα function and platelet-neutrophil interactions. Also, real-time microscopy and animal disease models were used to study the pathophysiological role of PDI-GPIbα signaling under thromboinflammatory conditions. RESULTS: Deletion or inhibition of platelet PDI significantly reduced GPIbα-mediated platelet agglutination. Studies using PDI-null platelets and recombinant PDI or Anfibatide, a clinical-stage GPIbα inhibitor, revealed that the oxidoreductase activity of platelet surface-bound PDI was required for the ligand-binding function of GPIbα. PDI directly bound to the extracellular domain of GPIbα on the platelet surface and reduced the Cys4-Cys17 and Cys209-Cys248 disulfide bonds. Real-time microscopy with platelet-specific PDI conditional knockout and sickle cell disease mice demonstrated that PDI-regulated GPIbα function was essential for platelet-neutrophil interactions and vascular occlusion under thromboinflammatory conditions. Studies using a mouse model of ischemia/reperfusion-induced stroke indicated that PDI-GPIbα signaling played a crucial role in tissue damage. CONCLUSIONS: Our results demonstrate that PDI-facilitated cleavage of the allosteric disulfide bonds tightly regulates GPIbα function, promoting platelet-neutrophil interactions, vascular occlusion, and tissue damage under thromboinflammatory conditions.


Asunto(s)
Anemia de Células Falciformes/enzimología , Plaquetas/enzimología , Inflamación/enzimología , Neutrófilos/metabolismo , Adhesividad Plaquetaria , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Trombosis/enzimología , Anemia de Células Falciformes/sangre , Anemia de Células Falciformes/genética , Animales , Modelos Animales de Enfermedad , Hemoglobinas/genética , Hemoglobinas/metabolismo , Humanos , Inflamación/sangre , Inflamación/genética , Ligandos , Ratones Endogámicos C57BL , Ratones Noqueados , Complejo GPIb-IX de Glicoproteína Plaquetaria/genética , Unión Proteica , Proteína Disulfuro Isomerasas/deficiencia , Proteína Disulfuro Isomerasas/genética , Transducción de Señal , Trombosis/sangre , Trombosis/genética
6.
Arch Pharm Res ; 41(5): 519-529, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29797242

RESUMEN

Phytoestrogen (PE) has received considerable attention due to the physiological significance of its estrogenicity. Flemingia strobilifera (FS) has been used as a folk medicine in Asia for the treatment of inflammation, cancer, and infection; however, the estrogenic effects and chemical components of FS have not yet been reported. We aimed to uncover the estrogenic properties and PEs derived from FS using phytochemical and pharmacological evaluation. PEs from FS extract (FSE) were analyzed by NMR, HPLC, and MS. To evaluate estrogenic activity, FSE and its compounds were evaluated by in vitro and in vivo assays, including human estrogen receptor alpha (hERα) binding, estrogen response element (ERE)-luciferase reporter assays, and uterotrophic assays. FSE and its compounds 1-5 showed binding affinities for hERα and activated ERE transcription in MCF-7 cells. Additionally, FSE and compounds 1-5 induced MCF-7 cell proliferation and trefoil factor 1 (pS2) expression. In immature female rats, significant increases in uterine weight and pS2 gene were observed in FSE-treated groups. We identified estrogenic activities of FSE and its bioactive compounds, suggesting their possible roles as PEs via ERs. PEs derived from FSE are promising candidates for ER-targeted therapy for post-menopausal symptoms.


Asunto(s)
Fabaceae/química , Fitoestrógenos/farmacología , Animales , Peso al Nacer/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Células MCF-7 , Fitoestrógenos/química , Fitoestrógenos/aislamiento & purificación , Presenilina-2/genética , Ratas , Ratas Sprague-Dawley , Células Tumorales Cultivadas , Útero/efectos de los fármacos
7.
Neurosci Lett ; 633: 227-234, 2016 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-27663137

RESUMEN

Bone marrow-derived mesenchymal stem cells (MSCs) are used in stroke treatment despite the poor understanding of its mode of action. The immune suppressive and anti-inflammatory properties of MSCs possibly play important roles in regulating neuroinflammation after stroke. We investigated whether MSCs reduce the inflammatory complement component 3 (C3) levels, thus, providing neuroprotection during stroke. Mice were subjected to transient focal cerebral ischemia (tFCI), after which MSCs were intravenously injected. The infarct volume of the brain was reduced in MSC-injected tFCI mice, and C3 expression was significantly reduced in both the brain and the blood. Additionally, the profiles of other inflammatory mediators demonstrated neuroprotective changes in the MSCs-treated group. In order to analyze the effect of MSCs on neurons during cerebral ischemia, primary cortical neurons were co-cultured with MSCs under oxygen-glucose deprivation (OGD). Primary neurons co-cultured with MSCs exhibited reduced levels of C3 expression and increased protection against OGD, indicating that treatment with MSCs reduces excessive C3 expression and rescues ischemia-induced neuronal damage. Our finding suggests that reduction of C3 expression by MSCs can help to ameliorate ischemic brain damage, offering a new neuroprotective strategy in stroke therapy.


Asunto(s)
Complemento C3/metabolismo , Ataque Isquémico Transitorio/prevención & control , Trasplante de Células Madre Mesenquimatosas , Animales , Hipoxia de la Célula , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Infarto Cerebral/metabolismo , Infarto Cerebral/patología , Infarto Cerebral/prevención & control , Citocinas/metabolismo , Regulación hacia Abajo , Glucosa/deficiencia , Ataque Isquémico Transitorio/metabolismo , Ataque Isquémico Transitorio/patología , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/metabolismo , Neuronas/patología , Oxígeno/metabolismo
8.
J Neurochem ; 136(4): 851-858, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26603372

RESUMEN

Emerging experimental evidence suggests that activation of Toll-like receptor 3 (TLR3) by its agonist polyinosinic polycytidylic acid (poly-ICLC) protects neurons against cerebral ischemia, but the underlying mechanisms remain largely unknown. In the brain, TLR3 is mostly expressed in glial cells. Therefore, we assess the hypothesis that TLR3 activation in microglia is required for neuroprotection against ischemia. After transient focal cerebral ischemia, microglia/macrophages (MMs) demonstrate a significant reduction in TLR3 and its downstream cytokine interleukin 6 (IL-6). Subsequently, activation of TLR3 by poly-ICLC restored TLR3 expression and decreased infarction. To further investigate these mechanisms, we turned to a primary cell culture system. Consistent with the in vivo findings, oxygen-glucose deprivation (OGD) significantly reduced TLR3 and IL-6 mRNA expression in microglia, but poly-ICLC significantly rescued TLR3 and IL-6 expression. Importantly, conditioned media from OGD-treated microglia increased neuronal death after OGD. In contrast, the conditioned media from microglia treated with poly-ICLC after OGD significantly protected against OGD-induced neuron death. Taken together, our findings provide proof-of-concept that activation of TLR3 in microglia may promote neuron survival after ischemia. We assessed the hypothesis that Toll-like receptor 3 (TLR3) activation in microglia is required for neuroprotection against ischemia. After transient focal cerebral ischemia, microglia/macrophage demonstrates a reduction in TLR3 and Interleukin 6 (IL-6). Also, oxygen-glucose deprivation (OGD) reduces TLR3 and IL-6 expression in microglia, but polyinosinic polycytidylic acid (poly-ICLC) rescues TLR3 and IL-6. Importantly, conditioned media from microglia treated with poly-ICLC protects against OGD-induced neuron death. We propose that activation of TLR3 in microglia may promote neuron survival after ischemia.

9.
Biomol Ther (Seoul) ; 22(4): 347-54, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25143815

RESUMEN

Larrea nitida is a plant that belongs to the Zygophyllaceae family and is widely used in South America to treat inflammatory diseases, tumors and menstrual pain. However, its pharmacological activity remains unclear. In this study we evaluated the property of selective estrogen receptor modulator (SERM) of Larrea nitida extracts (LNE) as a phytoestrogen that can mimic, modulate or disrupt the actions of endogenous estrogens, depending on the tissue and relative amount of other SERMs. To investigate the property of SERM of LNE, we performed MCF-7 cell proliferation assays, estrogen response element (ERE)-luciferase reporter gene assay, human estrogen receptor (hER) binding assays and in vivo uterotrophic assay. To gain insight into the active principles, we performed a bioassay-guided analysis of LNE employing solvents of various polarities and using classical column chromatography, which yielded 16 fractions (LNs). LNE showed high binding affinities for hERα and hERß with IC50 values of 1.20 ×10(-7) g/ml and 1.00×10(-7) g/ml, respectively. LNE induced 17ß-estradiol (E2)-induced MCF-7 cell proliferation, however, it reduced the proliferation in the presence of E2. Furthermore, LNE had an atrophic effect in the uterus of immature rats through reducing the expression level of progesterone receptor (PR) proteins. LN08 and LN10 had more potent affinities for binding on hER α and ß than other fractions. Our results indicate that LNE had higher binding affinities for hERß than hERα, and showed SERM properties in MCF-7 breast cancer cells and the rat uterus. LNE may be useful for the treatment of estrogen-related conditions, such as female cancers and menopause.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA