Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 9(2): e2103564, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34796701

RESUMEN

Cell-type-specific, activity-dependent electrophysiology can allow in-depth analysis of functional connectivity inside complex neural circuits composed of various cell types. To date, optics-based fluorescence recording devices enable monitoring cell-type-specific activities. However, the monitoring is typically limited to a single brain region, and the temporal resolution is significantly low. Herein, a multimodal multi-shank fluorescence neural probe that allows cell-type-specific electrophysiology from multiple deep-brain regions at a high spatiotemporal resolution is presented. A photodiode and an electrode-array pair are monolithically integrated on each tip of a minimal-form-factor silicon device. Both fluorescence and electrical signals are successfully measured simultaneously in GCaMP6f expressing mice, and the cell type from sorted neural spikes is identified. The probe's capability of combined electro-optical recordings for cell-type-specific electrophysiology at multiple brain regions within a neural circuit is demonstrated. The new experimental paradigm to enable the precise investigation of functional connectivity inside and across complex neural circuits composed of various cell types is expected.


Asunto(s)
Encéfalo/fisiología , Fenómenos Electrofisiológicos/fisiología , Electrofisiología/instrumentación , Electrofisiología/métodos , Colorantes Fluorescentes , Animales , Diseño de Equipo , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Dispositivos Ópticos
2.
Lab Chip ; 21(12): 2383-2397, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33955442

RESUMEN

The minimal invasiveness of electrocorticography (ECoG) enabled its widespread use in clinical areas as well as in neuroscience research. However, most existing ECoG arrays require that the entire surface area of the brain that is to be recorded be exposed through a large craniotomy. We propose a device that overcomes this limitation, i.e., a minimally invasive, polyimide-based flexible array of electrodes that can enable the recording of ECoG signals in multiple regions of the brain with minimal exposure of the surface of the brain. Magnetic force-assisted positioning of a flexible electrode array enables recording from distant brain regions with a small cranial window. Also, a biodegradable organic compound used for attaching a magnet on the electrodes allows simple retrieval of the magnet. We demonstrate with an in vivo chronic recording that an implanted ECoG electrode array can record ECoG signals from the visual cortex and the motor cortex during a rat's free behavior. Our results indicate that the proposed device induced minimal damage to the animal. We expect the proposed device to be utilized for experiments for large-scale brain circuit analyses as well as clinical applications for intra-operative monitoring of epileptic activity.


Asunto(s)
Electrocorticografía , Electroencefalografía , Animales , Encéfalo , Mapeo Encefálico , Electrodos Implantados , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA