Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Small Methods ; : e2400199, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38798160

RESUMEN

Nanohybrid assemblies provide an effective platform for integrating the intrinsic properties of individual components into microscale fibers. In this study, a novel approach for creating mechanically and environmentally stable MXene fibers through the synergistic assembly of MXene and polyacrylonitrile (PAN), is introduced. Unlike fibers generated via a conventional stabilization process, which relies on air-based stabilization to transform the PAN molecules into ring structures fundamental to carbon fibers, the hybrid fibers are annealed in an Ar atmosphere. This unique approach suggests MXene can serve as an oxygen provider that is essential for stabilizing PAN. As a result, significantly improved interfiber compactness is achieved and the oxidation stability of MXene is enhanced under atmospheric conditions. The resulting fibers exhibit exceptional stability, even after extended exposure to high humidity and elevated temperatures. This highlights the suitability of the thermally annealed MXene-PAN (T-MX-PAN) fibers as robust electric heating elements. Notably, these fibers consistently generate heat over 1800 bending cycles. When integrated into fabrics, they demonstrate the capability to generate sufficient heat for melting ice and rapid evaporation. This study highlights the potential of T-MX-PAN fibers as next-generation wearable heaters and offers valuable insights into advancing wearable technology in demanding environments.

2.
J Am Chem Soc ; 146(22): 15045-15052, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38768128

RESUMEN

Chiral Pb-free metal-halide semiconductors (MHSs) have attracted considerable attention in the field of spintronics due to various interesting spin-related properties and chiral-induced spin selectivity (CISS) effect. Despite their excellent chemical and structural tunability, the material scope and crystal structure of Pb-free chiral MHSs exhibiting the CISS effect are still limited; chiral MHSs that have metal-halide structures of octahedra and tetrahedra are only reported. Here, we report a new class of chiral MHSs, of which palladium (Pd)-halides are formed in 1D square-pyramidal structures or 0D square-planar structures, with a general formula of ((R/S-MBA)2PdBr4)1-x((R/S-MBA)2PdCl4)x (MBA = methylbenzylammonium; x = 0, 0.25, 0.5, 0.75, and 1) for the first time. The crystals adopt the 1D helical chain of Pd-halide square-pyramid (for x = 0, 0.25, 0.5, and 0.75) and 0D structure of Pd-halide square-plane (for x = 1). All the Pd-halides are distorted by the interaction between the halide and the chiral organic ammonium and arranged in a noncentrosymmetric position. Circular dichroism (CD) for ((R/S-MBA)2PdBr4)1-x((R/S-MBA)2PdCl4)x indicates that chirality was transferred from chiral organic ammonium to Pd-halide inorganics. ((R-MBA)2PdBr4)1-x((R-MBA)2PdCl4)x (x = 0, 0.25, 0.5, and 0.75) shows a distortion index of 0.127-0.128, which is the highest value among the previously reported chiral MHSs to the best of our knowledge. We also find that (R/S-MBA)2Pd(Br1-xClx)4 crystals grow along the out-of-plane direction during spin coating and have high c-axis orientation and crystallinity, and (R/S-MBA)2Pd(Br1-xClx)4 (x = 0 and 0.5) crystals exhibit a CISS effect in polycrystalline bulk films. These results demonstrate the possibility of a new metal-halide series with square-planar structures or square-pyramidal structures for future spintronic applications.

3.
Mater Horiz ; 10(11): 4892-4902, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37712182

RESUMEN

Two-dimensional Ti3C2Tx MXenes are promising candidates for a wide range of film- or fiber-based devices owing to their solution processability, high electrical conductivity, and versatile surface chemistry. The surface terminal groups (Tx) of MXenes can be removed to increase their inherent electrical performance and ensure chemical stability. Therefore, understanding the chemical evolution during the removal of the terminal groups is crucial for guiding the production, processing, and application of MXenes. Herein, we investigate the effect of chemical modification on the electron-transfer behavior during the removal of the terminal groups by annealing Ti3C2Tx MXene single sheets under argon (Ar-MXene) and ammonia gas (NH3-MXene) conditions. Annealing in ammonia gas results in surface nitridation of MXenes and preserves the electron-abundant Ti3C2 structure, whereas annealing MXene single sheets in Ar gas results in the oxidation of the titanium layers. The surface-nitrided MXene film exhibits an electrical conductivity two times higher than that of the Ar-MXene film. The oxidation stability is quantified by calculating the oxidation rate constants for severe reactions with H2O2. The surface-nitrided MXene is 13 times more stable than Ar-MXene. The investigation of MXene single sheets provides fundamental insights that are valuable for designing electrically conductive and chemically stable MXenes.

4.
Small ; 19(44): e2301077, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37401792

RESUMEN

A Joule heater made of emerging 2D nanosheets, i.e., MXene, has the advantage of low-voltage operation with stable heat generation owing to its highly conductive and uniformly layered structure. However, the self-heated MXene sheets easily get oxidized in warm and moist environments, which limits their intrinsic heating efficiencies. Herein, an ultrathin graphene skin is introduced as a surface-regulative coating on MXene to enhance its oxidative stability and Joule heating efficiency. The skin layer is deposited on MXene using a scalable solution-phased layer-by-layer assembly process without deteriorating the excellent electrical conductivity of the MXene. The graphene skin comprises narrow and hydrophobic channels, which results in ≈70 times higher water impermeability of the hybrid film of graphene and MXene (GMX) than that of the pristine MXene. A complementary electrochemical analysis confirms that the graphene skin facilitates longer-lasting protection than conventional polymer coatings owing to its tortuous pathways. In addition, the sp2 planar carbon surface with a low heat loss coefficient improves the heating efficiency of the GMX, indicating that this strategy is promising for developing adaptive heating materials with a tractable voltage range and high Joule heating efficiency.

5.
Langmuir ; 39(6): 2358-2367, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36734137

RESUMEN

Surface modification to improve the oxidation stability and dispersibility of MXene in diverse organic media is a facile strategy for broadening its application. Among the various ligands that can be grafted on the MXene surface, oleylamine (OAm), with amine functionalities, is an advantageous candidate owing to its strong interactions and commercial viability. OAms are grafted onto MXene through covalent bonds induced by nucleophilic reactions and H bonds in liquid interface reactions at room temperature. In addition, this grafting behavior of the ligand was characterized by a reduction in the slope with an increase in the ligand concentration (Cl), confirming that the OAms were grafted via Langmuir-like behavior, and the monolayer of OAms was developed via two distinct steps (I: lying-down phase; II: ordered monolayer). MXene nanosheets modified by OAm (OAm-MX) are highly dispersible in a wide range of organic solvents owing to the alkyl chain of the OAms, which induces hydrophobic properties on the surface of MXene. The OAm-MX dispersion exhibits outstanding oxidation and dispersion stability and remarkable coating performance on a wide range of substrates owing to their excellent solution processability. Therefore, this study provides fundamental insights into the adsorption behavior and interaction between amine ligands and MXene nanosheets for the surface chemistry of MXene.

6.
Commun Biol ; 6(1): 113, 2023 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-36709242

RESUMEN

Humans integrate multiple sources of information for action-taking, using the reliability of each source to allocate weight to the data. This reliability-weighted information integration is a crucial property of Bayesian inference. In this study, participants were asked to perform a smooth pursuit eye movement task in which we independently manipulated the reliability of pursuit target motion and the direction-of-motion cue. Through an analysis of pursuit initiation and multivariate electroencephalography activity, we found neural and behavioral evidence of Bayesian information integration: more attraction toward the cue direction was generated when the target motion was weak and unreliable. Furthermore, using mathematical modeling, we found that the neural signature of Bayesian information integration had extra-retinal origins, although most of the multivariate electroencephalography activity patterns during pursuit were best correlated with the retinal velocity errors accumulated over time. Our results demonstrated neural implementation of Bayesian inference in human oculomotor behavior.


Asunto(s)
Movimientos Oculares , Seguimiento Ocular Uniforme , Humanos , Teorema de Bayes , Reproducibilidad de los Resultados , Electroencefalografía
7.
ACS Nano ; 15(8): 13055-13064, 2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34291918

RESUMEN

Controlling the microstructures in fibers, such as crystalline structures and microvoids, is a crucial challenge for the development of mechanically strong graphene fibers (GFs). To date, although GFs graphitized at high temperatures have exhibited high tensile strength, GFs still have limited the ultimate mechanical strength owing to the presence due to the structural defects, including the imperfect alignment of graphitic crystallites and the presence of microsized voids. In this study, we significantly enhanced the mechanical strength of GF by controlling microstructures of fibers. GF was hybridized by incorporating polyacrylonitrile (PAN) in the graphene oxide (GO) dope solution. In addition, we controlled the orientation of the inner structure by applying a tensile force at 800 °C. The results suggest that PAN can act as a binder for graphene sheets and can facilitate the rearrangement of the fiber's microstructure. PAN was directionally carbonized between graphene sheets due to the catalytic effect of graphene. The resulting hybrid GFs successfully displayed a high strength of 1.10 GPa without undergoing graphitization at extremely high temperatures. We believe that controlling the alignment of nanoassembled structure is an efficient strategy for achieving the inherent performance characteristics of graphene at the level of multidimensional structures including films and fibers.

8.
ACS Nano ; 15(2): 3320-3329, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33497182

RESUMEN

Self-assembly of two-dimensional MXene sheets is used in various fields to create multiscale structures due to their electrical, mechanical, and chemical properties. In principle, MXene nanosheets are assembled by molecular interactions, including hydrogen bonds, electrostatic interactions, and van der Waals forces. This study describes how MXene colloid nanosheets can form self-supporting MXene hydrogels. Three-dimensional network structures of MXene gels are strengthened by reinforced electrostatic interactions between nanosheets. Stable gel networks are beneficial for fabricating highly aligned fibers because MXene gel can endure structural deformation. During wet spinning of highly concentrated MXene colloids in a coagulation bath, MXene sheets can be transformed into perfectly aligned fibers under a mechanical drawing force. Oriented MXene fibers exhibit a 1.5-fold increase in electrical conductivity (12 504 S cm-1) and Young's modulus (122 GPa) compared with other fibers. The oriented MXene fibers are expected to have widespread applications, including electrical wiring and signal transmission.

9.
Neuroimage ; 202: 116160, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31491522

RESUMEN

Visually-guided smooth pursuit eye movements are composed of initial open-loop and later steady-state periods. Feedforward sensory information dominates the motor behavior during the open-loop pursuit, and a more complex feedback loop regulates the steady-state pursuit. To understand the neural representations of motion direction during open-loop and steady-state smooth pursuits, we recorded electroencephalography (EEG) responses from human observers while they tracked random-dot kinematograms as pursuit targets. We estimated population direction tuning curves from multivariate EEG activity using an inverted encoding model. We found significant direction tuning curves as early as about 60 ms from stimulus onset. Direction tuning responses were generalized to later times during the open-loop smooth pursuit, but they became more dynamic during the later steady-state pursuit. The encoding quality of retinal motion direction information estimated from the early direction tuning curves was predictive of trial-by-trial variation in initial pursuit directions. These results suggest that the movement directions of open-loop smooth pursuit are guided by the representation of the retinal motion present in the multivariate EEG activity.


Asunto(s)
Encéfalo/fisiología , Percepción de Movimiento/fisiología , Seguimiento Ocular Uniforme/fisiología , Electroencefalografía , Medidas del Movimiento Ocular , Retroalimentación Sensorial , Humanos , Masculino , Análisis Multivariante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA