Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
BMC Genomics ; 25(1): 646, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943082

RESUMEN

BACKGROUND: Ménière's disease (MD) is a disorder of the inner ear that causes episodic bouts of severe dizziness, roaring tinnitus, and fluctuating hearing loss. To date, no targeted therapy exists. As such, we have undertaken a large whole genome sequencing study on carefully phenotyped unilateral MD patients with the goal of gene/pathway discovery and a move towards targeted intervention. This study was a retrospective review of patients with a history of Ménière's disease. Genomic DNA, acquired from saliva samples, was purified and subjected to whole genome sequencing. RESULTS: Stringent variant calling, performed on 511 samples passing quality checks, followed by gene-based filtering by recurrence and proximity in molecular interaction networks, led to 481 high priority MD genes. These high priority genes, including MPHOSPH8, MYO18A, TRIOBP, OTOGL, TNC, and MYO6, were previously implicated in hearing loss, balance, and cochlear function, and were significantly enriched in common variant studies of hearing loss. Validation in an independent MD cohort confirmed 82 recurrent genes. Pathway analysis pointed to cell-cell adhesion, extracellular matrix, and cellular energy maintenance as key mediators of MD. Furthermore, the MD-prioritized genes were highly expressed in human inner ear hair cells and dark/vestibular cells, and were differentially expressed in a mouse model of hearing loss. CONCLUSION: By enabling the development of model systems that may lead to targeted therapies and MD screening panels, the genes and variants identified in this study will inform diagnosis and treatment of MD.


Asunto(s)
Hidropesía Endolinfática , Genómica , Enfermedad de Meniere , Enfermedad de Meniere/genética , Humanos , Hidropesía Endolinfática/genética , Animales , Ratones , Masculino , Femenino , Estudios Retrospectivos , Secuenciación Completa del Genoma , Persona de Mediana Edad , Adulto
2.
Mol Cell ; 83(19): 3421-3437.e11, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37751740

RESUMEN

The nuclear receptor co-repressor (NCoR) complex mediates transcriptional repression dependent on histone deacetylation by histone deacetylase 3 (HDAC3) as a component of the complex. Unexpectedly, we found that signaling by the receptor activator of nuclear factor κB (RANK) converts the NCoR/HDAC3 co-repressor complex to a co-activator of AP-1 and NF-κB target genes that are required for mouse osteoclast differentiation. Accordingly, the dominant function of NCoR/HDAC3 complexes in response to RANK signaling is to activate, rather than repress, gene expression. Mechanistically, RANK signaling promotes RNA-dependent interaction of the transcriptional co-activator PGC1ß with the NCoR/HDAC3 complex, resulting in the activation of PGC1ß and inhibition of HDAC3 activity for acetylated histone H3. Non-coding RNAs Dancr and Rnu12, which are associated with altered human bone homeostasis, promote NCoR/HDAC3 complex assembly and are necessary for RANKL-induced osteoclast differentiation in vitro. These findings may be prototypic for signal-dependent functions of NCoR in other biological contexts.


Asunto(s)
Osteoclastos , ARN , Humanos , Ratones , Animales , Proteínas Co-Represoras/genética , Osteoclastos/metabolismo , Ligando RANK/genética , Co-Represor 1 de Receptor Nuclear/genética , Co-Represor 1 de Receptor Nuclear/metabolismo , Expresión Génica
3.
Pain ; 164(9): 1912-1926, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37326643

RESUMEN

ABSTRACT: Chronic pain affects more than 50 million Americans. Treatments remain inadequate, in large part, because the pathophysiological mechanisms underlying the development of chronic pain remain poorly understood. Pain biomarkers could potentially identify and measure biological pathways and phenotypical expressions that are altered by pain, provide insight into biological treatment targets, and help identify at-risk patients who might benefit from early intervention. Biomarkers are used to diagnose, track, and treat other diseases, but no validated clinical biomarkers exist yet for chronic pain. To address this problem, the National Institutes of Health Common Fund launched the Acute to Chronic Pain Signatures (A2CPS) program to evaluate candidate biomarkers, develop them into biosignatures, and discover novel biomarkers for chronification of pain after surgery. This article discusses candidate biomarkers identified by A2CPS for evaluation, including genomic, proteomic, metabolomic, lipidomic, neuroimaging, psychophysical, psychological, and behavioral measures. Acute to Chronic Pain Signatures will provide the most comprehensive investigation of biomarkers for the transition to chronic postsurgical pain undertaken to date. Data and analytic resources generatedby A2CPS will be shared with the scientific community in hopes that other investigators will extract valuable insights beyond A2CPS's initial findings. This article will review the identified biomarkers and rationale for including them, the current state of the science on biomarkers of the transition from acute to chronic pain, gaps in the literature, and how A2CPS will address these gaps.


Asunto(s)
Dolor Agudo , Dolor Crónico , Humanos , Proteómica , Dolor Postoperatorio/etiología , Dolor Agudo/complicaciones , Biomarcadores
4.
N Engl J Med ; 388(24): 2241-2252, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37256972

RESUMEN

BACKGROUND: Disabling pansclerotic morphea (DPM) is a rare systemic inflammatory disorder, characterized by poor wound healing, fibrosis, cytopenias, hypogammaglobulinemia, and squamous-cell carcinoma. The cause is unknown, and mortality is high. METHODS: We evaluated four patients from three unrelated families with an autosomal dominant pattern of inheritance of DPM. Genomic sequencing independently identified three heterozygous variants in a specific region of the gene that encodes signal transducer and activator of transcription 4 (STAT4). Primary skin fibroblast and cell-line assays were used to define the functional nature of the genetic defect. We also assayed gene expression using single-cell RNA sequencing of peripheral-blood mononuclear cells to identify inflammatory pathways that may be affected in DPM and that may respond to therapy. RESULTS: Genome sequencing revealed three novel heterozygous missense gain-of-function variants in STAT4. In vitro, primary skin fibroblasts showed enhanced interleukin-6 secretion, with impaired wound healing, contraction of the collagen matrix, and matrix secretion. Inhibition of Janus kinase (JAK)-STAT signaling with ruxolitinib led to improvement in the hyperinflammatory fibroblast phenotype in vitro and resolution of inflammatory markers and clinical symptoms in treated patients, without adverse effects. Single-cell RNA sequencing revealed expression patterns consistent with an immunodysregulatory phenotype that were appropriately modified through JAK inhibition. CONCLUSIONS: Gain-of-function variants in STAT4 caused DPM in the families that we studied. The JAK inhibitor ruxolitinib attenuated the dermatologic and inflammatory phenotype in vitro and in the affected family members. (Funded by the American Academy of Allergy, Asthma, and Immunology Foundation and others.).


Asunto(s)
Enfermedades Autoinmunes , Fármacos Dermatológicos , Quinasas Janus , Esclerodermia Sistémica , Quinasas Janus/antagonistas & inhibidores , Nitrilos , Pirazoles/uso terapéutico , Pirazoles/farmacología , Pirimidinas , Esclerodermia Sistémica/tratamiento farmacológico , Esclerodermia Sistémica/genética , Enfermedades Autoinmunes/tratamiento farmacológico , Enfermedades Autoinmunes/genética , Mutación Missense , Mutación con Ganancia de Función , Fármacos Dermatológicos/uso terapéutico , Antiinflamatorios/uso terapéutico
5.
Lancet Reg Health Am ; 19: 100449, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36844610

RESUMEN

Background: Schools are high-risk settings for SARS-CoV-2 transmission, but necessary for children's educational and social-emotional wellbeing. Previous research suggests that wastewater monitoring can detect SARS-CoV-2 infections in controlled residential settings with high levels of accuracy. However, its effective accuracy, cost, and feasibility in non-residential community settings is unknown. Methods: The objective of this study was to determine the effectiveness and accuracy of community-based passive wastewater and surface (environmental) surveillance to detect SARS-CoV-2 infection in neighborhood schools compared to weekly diagnostic (PCR) testing. We implemented an environmental surveillance system in nine elementary schools with 1700 regularly present staff and students in southern California. The system was validated from November 2020 to March 2021. Findings: In 447 data collection days across the nine sites 89 individuals tested positive for COVID-19, and SARS-CoV-2 was detected in 374 surface samples and 133 wastewater samples. Ninety-three percent of identified cases were associated with an environmental sample (95% CI: 88%-98%); 67% were associated with a positive wastewater sample (95% CI: 57%-77%), and 40% were associated with a positive surface sample (95% CI: 29%-52%). The techniques we utilized allowed for near-complete genomic sequencing of wastewater and surface samples. Interpretation: Passive environmental surveillance can detect the presence of COVID-19 cases in non-residential community school settings with a high degree of accuracy. Funding: County of San Diego, Health and Human Services Agency, National Institutes of Health, National Science Foundation, Centers for Disease Control.

6.
medRxiv ; 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34704096

RESUMEN

Background: Schools are high-risk settings for SARS-CoV-2 transmission, but necessary for children's educational and social-emotional wellbeing. Previous research suggests that wastewater monitoring can detect SARS-CoV-2 infections in controlled residential settings with high levels of accuracy. However, its effective accuracy, cost, and feasibility in non-residential community settings is unknown. Methods: The objective of this study was to determine the effectiveness and accuracy of community-based passive wastewater and surface (environmental) surveillance to detect SARS-CoV-2 infection in neighborhood schools compared to weekly diagnostic (PCR) testing. We implemented an environmental surveillance system in nine elementary schools with 1700 regularly present staff and students in southern California. The system was validated from November 2020 - March 2021. Findings: In 447 data collection days across the nine sites 89 individuals tested positive for COVID-19, and SARS-CoV-2 was detected in 374 surface samples and 133 wastewater samples. Ninety-three percent of identified cases were associated with an environmental sample (95% CI: 88% - 98%); 67% were associated with a positive wastewater sample (95% CI: 57% - 77%), and 40% were associated with a positive surface sample (95% CI: 29% - 52%). The techniques we utilized allowed for near-complete genomic sequencing of wastewater and surface samples. Interpretation: Passive environmental surveillance can detect the presence of COVID-19 cases in non-residential community school settings with a high degree of accuracy. Funding: County of San Diego, Health and Human Services Agency, National Institutes of Health, National Science Foundation, Centers for Disease Control.

7.
Nat Immunol ; 23(12): 1763-1776, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36316474

RESUMEN

The nuclear corepressors NCOR1 and NCOR2 interact with transcription factors involved in B cell development and potentially link these factors to alterations in chromatin structure and gene expression. Herein, we demonstrate that Ncor1/2 deletion limits B cell differentiation via impaired recombination, attenuates pre-BCR signaling and enhances STAT5-dependent transcription. Furthermore, NCOR1/2-deficient B cells exhibited derepression of EZH2-repressed gene modules, including the p53 pathway. These alterations resulted in aberrant Rag1 and Rag2 expression and accessibility. Whole-genome sequencing of Ncor1/2 DKO B cells identified increased number of structural variants with cryptic recombination signal sequences. Finally, deletion of Ncor1 alleles in mice facilitated leukemic transformation, whereas human leukemias with less NCOR1 correlated with worse survival. NCOR1/2 mutations in human leukemia correlated with increased RAG expression and number of structural variants. These studies illuminate how the corepressors NCOR1/2 regulate B cell differentiation and provide insights into how NCOR1/2 mutations may promote B cell transformation.


Asunto(s)
Hematopoyesis , Transducción de Señal , Ratones , Humanos , Animales , Proteínas Co-Represoras , Núcleo Celular , Genómica , Co-Represor 2 de Receptor Nuclear/genética , Co-Represor 1 de Receptor Nuclear/genética
8.
Nature ; 609(7925): 101-108, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35798029

RESUMEN

As SARS-CoV-2 continues to spread and evolve, detecting emerging variants early is critical for public health interventions. Inferring lineage prevalence by clinical testing is infeasible at scale, especially in areas with limited resources, participation, or testing and/or sequencing capacity, which can also introduce biases1-3. SARS-CoV-2 RNA concentration in wastewater successfully tracks regional infection dynamics and provides less biased abundance estimates than clinical testing4,5. Tracking virus genomic sequences in wastewater would improve community prevalence estimates and detect emerging variants. However, two factors limit wastewater-based genomic surveillance: low-quality sequence data and inability to estimate relative lineage abundance in mixed samples. Here we resolve these critical issues to perform a high-resolution, 295-day wastewater and clinical sequencing effort, in the controlled environment of a large university campus and the broader context of the surrounding county. We developed and deployed improved virus concentration protocols and deconvolution software that fully resolve multiple virus strains from wastewater. We detected emerging variants of concern up to 14 days earlier in wastewater samples, and identified multiple instances of virus spread not captured by clinical genomic surveillance. Our study provides a scalable solution for wastewater genomic surveillance that allows early detection of SARS-CoV-2 variants and identification of cryptic transmission.


Asunto(s)
COVID-19 , SARS-CoV-2 , Monitoreo Epidemiológico Basado en Aguas Residuales , Aguas Residuales , COVID-19/epidemiología , COVID-19/transmisión , COVID-19/virología , Humanos , ARN Viral/análisis , ARN Viral/genética , SARS-CoV-2/clasificación , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Análisis de Secuencia de ARN , Aguas Residuales/virología
9.
Am J Physiol Lung Cell Mol Physiol ; 323(1): L84-L92, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35699291

RESUMEN

Increased plasma mitochondrial DNA concentrations are associated with poor outcomes in multiple critical illnesses, including COVID-19. However, current methods of cell-free mitochondrial DNA quantification in plasma are time-consuming and lack reproducibility. Here, we used next-generation sequencing to characterize the size and genome location of circulating mitochondrial DNA in critically ill subjects with COVID-19 to develop a facile and optimal method of quantification by droplet digital PCR. Sequencing revealed a large percentage of small mitochondrial DNA fragments in plasma with wide variability in coverage by genome location. We identified probes for the mitochondrial DNA genes, cytochrome B and NADH dehydrogenase 1, in regions of relatively high coverage that target small sequences potentially missed by other methods. Serial assessments of absolute mitochondrial DNA concentrations were then determined in plasma from 20 critically ill subjects with COVID-19 without a DNA isolation step. Mitochondrial DNA concentrations on the day of enrollment were increased significantly in patients with moderate or severe acute respiratory distress syndrome (ARDS) compared with those with no or mild ARDS. Comparisons of mitochondrial DNA concentrations over time between patients with no/mild ARDS who survived, patients with moderate/severe ARDS who survived, and nonsurvivors showed the highest concentrations in patients with more severe disease. Absolute mitochondrial DNA quantification by droplet digital PCR is time-efficient and reproducible; thus, we provide a valuable tool and rationale for future studies evaluating mitochondrial DNA as a real-time biomarker to guide clinical decision-making in critically ill subjects with COVID-19.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , COVID-19/diagnóstico , COVID-19/genética , Enfermedad Crítica , ADN Mitocondrial/genética , Humanos , Unidades de Cuidados Intensivos , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados , Síndrome de Dificultad Respiratoria/diagnóstico , Síndrome de Dificultad Respiratoria/genética
10.
Front Med (Lausanne) ; 9: 849214, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35547202

RESUMEN

Chronic pain has become a global health problem contributing to years lived with disability and reduced quality of life. Advances in the clinical management of chronic pain have been limited due to incomplete understanding of the multiple risk factors and molecular mechanisms that contribute to the development of chronic pain. The Acute to Chronic Pain Signatures (A2CPS) Program aims to characterize the predictive nature of biomarkers (brain imaging, high-throughput molecular screening techniques, or "omics," quantitative sensory testing, patient-reported outcome assessments and functional assessments) to identify individuals who will develop chronic pain following surgical intervention. The A2CPS is a multisite observational study investigating biomarkers and collective biosignatures (a combination of several individual biomarkers) that predict susceptibility or resilience to the development of chronic pain following knee arthroplasty and thoracic surgery. This manuscript provides an overview of data collection methods and procedures designed to standardize data collection across multiple clinical sites and institutions. Pain-related biomarkers are evaluated before surgery and up to 3 months after surgery for use as predictors of patient reported outcomes 6 months after surgery. The dataset from this prospective observational study will be available for researchers internal and external to the A2CPS Consortium to advance understanding of the transition from acute to chronic postsurgical pain.

11.
medRxiv ; 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35411350

RESUMEN

As SARS-CoV-2 continues to spread and evolve, detecting emerging variants early is critical for public health interventions. Inferring lineage prevalence by clinical testing is infeasible at scale, especially in areas with limited resources, participation, or testing/sequencing capacity, which can also introduce biases. SARS-CoV-2 RNA concentration in wastewater successfully tracks regional infection dynamics and provides less biased abundance estimates than clinical testing. Tracking virus genomic sequences in wastewater would improve community prevalence estimates and detect emerging variants. However, two factors limit wastewater-based genomic surveillance: low-quality sequence data and inability to estimate relative lineage abundance in mixed samples. Here, we resolve these critical issues to perform a high-resolution, 295-day wastewater and clinical sequencing effort, in the controlled environment of a large university campus and the broader context of the surrounding county. We develop and deploy improved virus concentration protocols and deconvolution software that fully resolve multiple virus strains from wastewater. We detect emerging variants of concern up to 14 days earlier in wastewater samples, and identify multiple instances of virus spread not captured by clinical genomic surveillance. Our study provides a scalable solution for wastewater genomic surveillance that allows early detection of SARS-CoV-2 variants and identification of cryptic transmission.

12.
Sci Rep ; 12(1): 5077, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35332213

RESUMEN

Throughout the COVID-19 pandemic, massive sequencing and data sharing efforts enabled the real-time surveillance of novel SARS-CoV-2 strains throughout the world, the results of which provided public health officials with actionable information to prevent the spread of the virus. However, with great sequencing comes great computation, and while cloud computing platforms bring high-performance computing directly into the hands of all who seek it, optimal design and configuration of a cloud compute cluster requires significant system administration expertise. We developed ViReflow, a user-friendly viral consensus sequence reconstruction pipeline enabling rapid analysis of viral sequence datasets leveraging Amazon Web Services (AWS) cloud compute resources and the Reflow system. ViReflow was developed specifically in response to the COVID-19 pandemic, but it is general to any viral pathogen. Importantly, when utilized with sufficient compute resources, ViReflow can trim, map, call variants, and call consensus sequences from amplicon sequence data from 1000 SARS-CoV-2 samples at 1000X depth in < 10 min, with no user intervention. ViReflow's simplicity, flexibility, and scalability make it an ideal tool for viral molecular epidemiological efforts.


Asunto(s)
COVID-19 , Programas Informáticos , COVID-19/epidemiología , Genoma Viral/genética , Humanos , Pandemias , SARS-CoV-2/genética
13.
NPJ Breast Cancer ; 8(1): 6, 2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35027560

RESUMEN

Microenvironmental and molecular factors mediating the progression of Breast Ductal Carcinoma In Situ (DCIS) are not well understood, impeding the development of prevention strategies and the safe testing of treatment de-escalation. We addressed methodological barriers and characterized the mutational, transcriptional, histological, and microenvironmental landscape across 85 multiple microdissected regions from 39 cases. Most somatic alterations, including whole-genome duplications, were clonal, but genetic divergence increased with physical distance. Phenotypic and subtype heterogeneity was frequently associated with underlying genetic heterogeneity and regions with low-risk features preceded those with high-risk features according to the inferred phylogeny. B- and T-lymphocytes spatial analysis identified three immune states, including an epithelial excluded state located preferentially at DCIS regions, and characterized by histological and molecular features of immune escape, independently from molecular subtypes. Such breast pre-cancer atlas with uniquely integrated observations will help scope future expansion studies and build finer models of outcomes and progression risk.

14.
EMBO Rep ; 22(12): e52509, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34698427

RESUMEN

Aneuploidy is a chromosomal abnormality associated with poor prognosis in many cancer types. Here, we tested the hypothesis that the unfolded protein response (UPR) mechanistically links aneuploidy and local immune dysregulation. Using a single somatic copy number alteration (SCNA) score inclusive of whole-chromosome, chromosome arm, and focal alterations in a pan-cancer analysis of 9,375 samples in The Cancer Genome Atlas (TCGA) database, we found an inverse correlation with a cytotoxicity (CYT) score across disease stages. Co-expression patterns of UPR genes changed substantially between SCNAlow and SCNAhigh groups. Pathway activity scores showed increased activity of multiple branches of the UPR in response to aneuploidy. The PERK branch showed the strongest association with a reduced CYT score. The conditioned medium of aneuploid cells transmitted XBP1 splicing and caused IL-6 and arginase 1 transcription in receiver bone marrow-derived macrophages and markedly diminished the production of IFN-γ and granzyme B in activated human T cells. We propose the UPR as a mechanistic link between aneuploidy and immune dysregulation in the tumor microenvironment.


Asunto(s)
Neoplasias , Respuesta de Proteína Desplegada , Aneuploidia , Humanos , Neoplasias/genética , Microambiente Tumoral
15.
Alzheimers Dement (Amst) ; 13(1): e12156, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33665346

RESUMEN

INTRODUCTION: Dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD) are characterized by cognitive alterations, visual hallucinations, and motor impairment. Diagnosis is based on type and timing of clinical manifestations; however, determination of clinical subtypes is challenging. The utility of blood DNA methylation as a biomarker for Lewy body disorders (LBD) is mostly unexplored. METHODS: We performed a cross-sectional analysis of blood methylation in 42 DLB and 50 PDD cases applying linear models to compare groups and logistic least absolute shrinkage and selection operator regression to explore the discriminant power of methylation signals. RESULTS: DLB blood shows differential methylation compared to PDD. Some methylation changes associate with core features of LBD. Sets of probes show high predictive value to discriminate between variants. DISCUSSION: Our study is the first to explore LBD blood methylation. Despite overlapping clinical presentation, we detected differential epigenetic signatures that, if confirmed in independent cohorts, could be developed into useful biomarkers.

16.
Stem Cell Res ; 49: 102096, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33370871

RESUMEN

Cancer-derived iPSCs have provided valuable insight into oncogenesis, but human cancer cells can often be difficult to reprogram, especially in cases of complex genetic abnormalities. Here we report, to our knowledge, the first successful generation of an iPSC line from a human immortalized acute myeloid leukemia (AML) cell line, the cell line HL-60. This iPSC line retains a majority of the leukemic genotype and displays defects in myeloid differentiation, thus providing a tool for modeling and studying AML.


Asunto(s)
Células Madre Pluripotentes Inducidas , Leucemia Mieloide Aguda , Diferenciación Celular , Células HL-60 , Hematopoyesis , Humanos , Leucemia Mieloide Aguda/genética
17.
BMC Med Genomics ; 13(1): 173, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33208147

RESUMEN

BACKGROUND: Systematic cancer screening has led to the increased detection of pre-malignant lesions (PMLs). The absence of reliable prognostic markers has led mostly to over treatment resulting in potentially unnecessary stress, or insufficient treatment and avoidable progression. Importantly, most mutational profiling studies have relied on PML synchronous to invasive cancer, or performed in patients without outcome information, hence limiting their utility for biomarker discovery. The limitations in comprehensive mutational profiling of PMLs are in large part due to the significant technical and methodological challenges: most PML specimens are small, fixed in formalin and paraffin embedded (FFPE) and lack matching normal DNA. METHODS: Using test DNA from a highly degraded FFPE specimen, multiple targeted sequencing approaches were evaluated, varying DNA input amount (3-200 ng), library preparation strategy (BE: Blunt-End, SS: Single-Strand, AT: A-Tailing) and target size (whole exome vs. cancer gene panel). Variants in high-input DNA from FFPE and mirrored frozen specimens were used for PML-specific variant calling training and testing, respectively. The resulting approach was applied to profile and compare multiple regions micro-dissected (mean area 5 mm2) from 3 breast ductal carcinoma in situ (DCIS). RESULTS: Using low-input FFPE DNA, BE and SS libraries resulted in 4.9 and 3.7 increase over AT libraries in the fraction of whole exome covered at 20x (BE:87%, SS:63%, AT:17%). Compared to high-confidence somatic mutations from frozen specimens, PML-specific variant filtering increased recall (BE:85%, SS:80%, AT:75%) and precision (BE:93%, SS:91%, AT:84%) to levels expected from sampling variation. Copy number alterations were consistent across all tested approaches and only impacted by the design of the capture probe-set. Applied to DNA extracted from 9 micro-dissected regions (8 PML, 1 normal epithelium), the approach achieved comparable performance, illustrated the data adequacy to identify candidate driver events (GATA3 mutations, ERBB2 or FGFR1 gains, TP53 loss) and measure intra-lesion genetic heterogeneity. CONCLUSION: Alternate experimental and analytical strategies increased the accuracy of DNA sequencing from archived micro-dissected PML regions, supporting the deeper molecular characterization of early cancer lesions and achieving a critical milestone in the development of biology-informed prognostic markers and precision chemo-prevention strategies.


Asunto(s)
Bancos de Muestras Biológicas , Neoplasias de la Mama/genética , Carcinoma Intraductal no Infiltrante/genética , Análisis Mutacional de ADN/métodos , Análisis de Secuencia de ADN/métodos , Manejo de Especímenes , Benchmarking , Células Clonales , Variaciones en el Número de Copia de ADN , Fragmentación del ADN , Disección/métodos , Femenino , Biblioteca de Genes , Genes erbB-2 , Heterogeneidad Genética , Humanos , Mutación INDEL , Mutación , Adhesión en Parafina , Polimorfismo de Nucleótido Simple , Reacción en Cadena en Tiempo Real de la Polimerasa , Fijación del Tejido
18.
Genome Biol ; 21(1): 223, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32892750

RESUMEN

BACKGROUND: A key step in domestication of the grapevine was the transition from separate sexes (dioecy) in wild Vitis vinifera ssp. sylvestris (V. sylvestris) to hermaphroditism in cultivated Vitis vinifera ssp. sativa (V. vinifera). It is known that V. sylvestris has an XY system and V. vinifera a modified Y haplotype (Yh) and that the sex locus is small, but it has not previously been precisely characterized. RESULTS: We generate a high-quality de novo reference genome for V. sylvestris, onto which we map whole-genome re-sequencing data of a cross to locate the sex locus. Assembly of the full X, Y, and Yh haplotypes of V. sylvestris and V. vinifera sex locus and examining their gene content and expression profiles during flower development in wild and cultivated accessions show that truncation and deletion of tapetum and pollen development genes on the X haplotype likely causes male sterility, while the upregulation of a Y allele of a cytokinin regulator (APRT3) may cause female sterility. The downregulation of this cytokinin regulator in the Yh haplotype may be sufficient to trigger reversal to hermaphroditism. Molecular dating of X and Y haplotypes is consistent with the sex locus being as old as the Vitis genus, but the mechanism by which recombination was suppressed remains undetermined. CONCLUSIONS: We describe the genomic and evolutionary characterization of the sex locus of cultivated and wild grapevine, providing a coherent model of sex determination in the latter and for transition from dioecy to hermaphroditism during domestication.


Asunto(s)
Domesticación , Genoma de Planta , Procesos de Determinación del Sexo , Vitis/genética , Haplotipos , Infertilidad Vegetal/genética , Secuenciación Completa del Genoma
19.
PLoS Biol ; 18(6): e3000687, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32520957

RESUMEN

In the tumor microenvironment, local immune dysregulation is driven in part by macrophages and dendritic cells that are polarized to a mixed proinflammatory/immune-suppressive phenotype. The unfolded protein response (UPR) is emerging as the possible origin of these events. Here we report that the inositol-requiring enzyme 1 (IRE1α) branch of the UPR is directly involved in the polarization of macrophages in vitro and in vivo, including the up-regulation of interleukin 6 (IL-6), IL-23, Arginase1, as well as surface expression of CD86 and programmed death ligand 1 (PD-L1). Macrophages in which the IRE1α/X-box binding protein 1 (Xbp1) axis is blocked pharmacologically or deleted genetically have significantly reduced polarization and CD86 and PD-L1 expression, which was induced independent of IFNγ signaling, suggesting a novel mechanism in PD-L1 regulation in macrophages. Mice with IRE1α- but not Xbp1-deficient macrophages showed greater survival than controls when implanted with B16.F10 melanoma cells. Remarkably, we found a significant association between the IRE1α gene signature and CD274 gene expression in tumor-infiltrating macrophages in humans. RNA sequencing (RNASeq) analysis showed that bone marrow-derived macrophages with IRE1α deletion lose the integrity of the gene connectivity characteristic of regulated IRE1α-dependent decay (RIDD) and the ability to activate CD274 gene expression. Thus, the IRE1α/Xbp1 axis drives the polarization of macrophages in the tumor microenvironment initiating a complex immune dysregulation leading to failure of local immune surveillance.


Asunto(s)
Antígeno B7-H1/metabolismo , Polaridad Celular , Endorribonucleasas/metabolismo , Macrófagos/metabolismo , Neoplasias/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Antígeno CD11b/metabolismo , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Inflamación/patología , Modelos Lineales , Ratones Endogámicos C57BL , Ratones Noqueados , Células Mieloides/metabolismo , Neoplasias/metabolismo , Fenotipo , Respuesta de Proteína Desplegada , Proteína 1 de Unión a la X-Box/metabolismo
20.
Genome Biol ; 20(1): 226, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31672156

RESUMEN

As metagenomic studies move to increasing numbers of samples, communities like the human gut may benefit more from the assembly of abundant microbes in many samples, rather than the exhaustive assembly of fewer samples. We term this approach leaderboard metagenome sequencing. To explore protocol optimization for leaderboard metagenomics in real samples, we introduce a benchmark of library prep and sequencing using internal references generated by synthetic long-read technology, allowing us to evaluate high-throughput library preparation methods against gold-standard reference genomes derived from the samples themselves. We introduce a low-cost protocol for high-throughput library preparation and sequencing.


Asunto(s)
Biblioteca Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica/métodos , Animales , Benchmarking , Microbioma Gastrointestinal , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...