RESUMEN
The Pfizer-BioNTech vaccine was one of the essential tools in curtailing the COVID-19 pandemic. Unlike conventional vaccines, this newly approved mRNA vaccine is taken up by cells, which leads to the synthesis of the specific viral Spike antigen. The vaccine was initially introduced for adults, and the immunological profile of adult recipients is well-characterized. The vaccine was approved for paediatric use much later after its efficacy and safety had been confirmed in children. However, the complete picture of how the paediatric immune system in children reacts to the vaccine is not well documented. Therefore, in order to better understand the immune response in children, we analysed the humoral response, immune cell count, and interferon signalling in paediatric vaccine recipients ranging between 5 and 17 years of age. Our findings suggest that the paediatric recipients elicit a robust humoral response that is sustained for at least three months. We also found that the vaccine triggered a transient lymphocytopenia similar to that observed during viral infection. Interestingly, we also found that the vaccine may sensitise the interferon signalling pathway, priming the cells to mount a potent response when exposed to interferons during a subsequent infection. The study offers new insights into the workings of the paediatric immune system and innate immunity, thereby opening the doors for further research in this field.
RESUMEN
Diabetes mellitus (DM) is comprised of two predominant subtypes: type 1 diabetes mellitus (T1DM), accounting for approximately 5 % of cases worldwide and resulting from autoimmune destruction of insulin-producing ß-cells, and type 2 (T2DM), accounting for approximately 95 % of cases globally and characterized by the inability of pancreatic ß-cells to meet the demand for insulin due to a relative ß-cell deficit in the setting of peripheral insulin resistance. Both types of DM involve derangement of glucose metabolism and are metabolic diseases generally considered to be initiated by a combination of genetic and environmental factors. Viruses have been reported to play a role as infectious etiological factors in the initiation of both types of DM in predisposed individuals. Among the reported viral infections causing DM in humans, the most studied include coxsackie B virus, cytomegalovirus and hepatitis C virus. The recent COVID-19 pandemic has highlighted the diabetogenic potential of SARS-CoV-2, rekindling interest in the field of virus-induced diabetes (VID). This review discusses the reported mechanisms of viral-induced DM, addressing emerging concepts in VID, as well as highlighting areas where knowledge is lacking, and further investigation is warranted.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/complicaciones , SARS-CoV-2/patogenicidad , Diabetes Mellitus/etiología , Diabetes Mellitus/virología , Diabetes Mellitus Tipo 1/virología , Diabetes Mellitus Tipo 1/etiología , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/complicaciones , Virosis/complicaciones , Células Secretoras de Insulina/virología , Células Secretoras de Insulina/metabolismo , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/virología , Diabetes Mellitus Tipo 2/metabolismoRESUMEN
The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has raised concerns regarding vaccine effectiveness. We investigated humoral and cellular immune responses against SARS-CoV-2 in healthcare workers before and after a third (booster) dose of the BNT162b2 messenger RNA vaccine. It significantly enhanced both humoral and cellular immunity in previously uninfected individuals. However, cellular immunity was not enhanced in previously infected persons, suggesting that 3 antigenic stimuli by vaccination or natural infection reached a plateau of cellular immunity. Even with reinforced immunity to SARS-CoV-2, we confirmed several postbooster breakthrough cases caused by the Omicron variant.
Asunto(s)
COVID-19 , Vacunas , Humanos , SARS-CoV-2 , Vacuna BNT162 , Pueblos del Este de Asia , COVID-19/prevención & control , Inmunidad Celular , Vacunación , Personal de Salud , Anticuerpos Antivirales , Inmunidad HumoralRESUMEN
Human T-cell leukemia virus type 1 (HTLV-1), a retrovirus, causes adult T-cell leukemia-lymphoma, HTLV-1 associated myelopathy/tropical spastic paraparesis, and HTLV-1 uveitis. Currently, no antiretroviral therapies or vaccines are available for HTLV-1 infection. This study aimed to develop an antibody against the HTLV-1 envelope protein (Env) and apply it to a near-infrared photoimmuno-antimicrobial strategy (NIR-PIAS) to eliminate HTLV-1 infected cells. We established mouse monoclonal antibodies (mAbs) against HTLV-1 Env by immunization with a complex of liposome and the recombinant protein. Detailed epitope mapping revealed that one of the mAbs bound to the proline-rich region of gp46 and exhibited no obvious neutralizing activity to inhibit viral infection. Instead, the mAb was rarely internalized intracellularly and remained on the cell surface of HTLV-1-infected cells. The antibody conjugated to the photosensitive dye IRDye700Dx recognized HTLV-1 infected cells and killed them following NIR irradiation. These results suggest that the novel mAb and NIR-PIAS could be developed as a new targeted therapeutic tool against HTLV-1 infected cells.
Asunto(s)
Virus Linfotrópico T Tipo 1 Humano , Ratones , Animales , Humanos , Proteínas Oncogénicas de Retroviridae , Anticuerpos Monoclonales , Liposomas , Productos del Gen env , Proteínas Recombinantes , Glicoproteínas , ProlinaRESUMEN
The spike protein (SP) of SARS-CoV-2 is an important target for COVID-19 therapeutics and vaccines as it binds to the ACE2 receptor and enables viral infection. Rapid production and functional characterization of properly folded SP is of the utmost importance for studying the immunogenicity and receptor-binding activity of this protein considering the emergence of highly infectious viral variants. In this study, we attempted to express the receptor-binding region (RBD) of SARS-CoV-2 SP containing disulfide bonds using the wheat germ cell-free protein synthesis system. By adding protein disulfide isomerase (PDI) and endoplasmic reticulum oxidase (ERO1α) to the translational reaction mixture, we succeeded in synthesizing a functionally intact RBD protein that can interact with ACE2. Using this RBD protein, we have developed a high-throughput AlphaScreen assay to evaluate the RBD-ACE2 interaction, which can be applied for drug screening and mutation analysis. Thus, our method sheds new light on the structural and functional properties of SARS-CoV-2 SP and has the potential to contribute to the development of new COVID-19 therapeutics.
Asunto(s)
COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Disulfuros , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , Glicoproteína de la Espiga del Coronavirus , TriticumRESUMEN
The coronavirus disease 2019 (COVID-19) pandemic has progressed over 2 years since its onset causing significant health concerns all over the world and is currently curtailed by mass vaccination. Immunity acquired against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be following either infection or vaccination. However, one can never be sure whether the acquired immunity is adequate to protect the individual from subsequent infection because of three important factors: individual variations in humoral response dynamics, waning of protective antibodies over time, and the emergence of immune escape mutants. Therefore, a test that can accurately differentiate the protected from the vulnerable is the need of the hour. The plaque reduction neutralization assay is the conventional gold standard test for estimating the titers of neutralizing antibodies that confer protection. However, it has got several drawbacks, which hinder the practical application of this test for wide-scale usage. Hence, various tests have been developed to detect protective immunity against SARS-CoV-2 that directly or indirectly assess the presence of neutralizing antibodies to SARS-CoV-2 in a lower biosafety setting. In this review, the pros and cons of the currently available assays are elaborated in detail and special focus is put on the scope of the novel split nanoluciferase technology for detecting SARS-CoV-2 neutralizing antibodies.
Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , Pruebas de Neutralización , TecnologíaRESUMEN
Although the involvement of macroautophagy/autophagy in hepatitis B virus (HBV) infection has become clearer recently, whether selective autophagy plays an important role in suppressing HBV remains uncertain. We recently found that LGALS9 (galectin 9) is an interferon (IFN)-inducible protein involved in the suppression of HBV replication. Expression of LGALS9 in HBV-infected cells causes the formation of cytoplasmic puncta that degrade the HBV core protein (HBc) in conjunction with RSAD2/viperin, another IFN-inducible protein. LGALS9 binds to HBc via RSAD2 and promotes the autoubiquitination of RNF13 (ring finger protein 13) to recruit SQSTM1/p62, resulting in the formation of LC3-positive autophagosomes that degrade HBc. Both LGALS9 and RSAD2 are encoded by IFN-stimulated genes that act synergistically to induce HBc proteolysis in HBV-infected hepatocytes in an IFN-dependent manner. These results reveal a crosstalk mechanism between the innate immune system and selective autophagy during viral infection.
Asunto(s)
Virus de la Hepatitis B , Hepatitis B , Autofagia , Hepatocitos , Humanos , Sistema Inmunológico , Macroautofagia , Replicación ViralRESUMEN
The successive emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has presented a major challenge in the management of the coronavirus disease (COVID-19) pandemic. There are growing concerns regarding the emerging variants escaping vaccines or therapeutic neutralizing antibodies. In this study, we conducted an epidemiological survey to identify SARS-CoV-2 variants that are sporadically proliferating in vaccine-advanced countries. Subsequently, we created HiBiT-tagged virus-like particles displaying spike proteins derived from the variants to analyze the neutralizing efficacy of the BNT162b2 mRNA vaccine and several therapeutic antibodies. We found that the Mu variant and a derivative of the Delta strain with E484K and N501Y mutations significantly evaded vaccine-elicited neutralizing antibodies. This trend was also observed in the Beta and Gamma variants, although they are currently not prevalent. Although 95.2% of the vaccinees exhibited prominent neutralizing activity against the prototype strain, only 73.8 and 78.6% of the vaccinees exhibited neutralizing activity against the Mu and the Delta derivative variants, respectively. A long-term analysis showed that 88.8% of the vaccinees initially exhibited strong neutralizing activity against the currently circulating Delta strain; the number decreased to 31.6% for the individuals at 6 months after vaccination. Notably, these variants were shown to be resistant to several therapeutic antibodies. Our findings demonstrate the differential neutralization efficacy of the COVID-19 vaccine and monoclonal antibodies against circulating variants, suggesting the need for pandemic alerts and booster vaccinations against the currently prevalent variants.
RESUMEN
Phosphorylation of viral proteins serves as a regulatory mechanism during the intracellular life cycle of infected viruses. There is therefore a pressing need to develop a method to efficiently purify and enrich phosphopeptides derived from viral particles in biological samples. In this study, we utilized Phos-tag technology to analyze the functional phosphorylation of the nucleocapsid protein (N protein; NP) of severe respiratory syndrome coronavirus 2 (SARS-CoV-2). Viral particles were collected from culture supernatants of SARS-CoV-2-infected VeroE6/TMPRSS2 cells by ultracentrifugation, and phosphopeptides were purified by Phos-tag magnetic beads for LC-MS/MS analysis. Analysis revealed that NP was reproducibly phosphorylated at serine 79 (Ser79). Multiple sequence alignment and phylogenetic analysis showed that the Ser79 was a distinct phospho-acceptor site in SARS-CoV-2 but not in other beta-coronaviruses. We also found that the prolyl-isomerase Pin1 bound to the phosphorylated Ser79 in NP and positively regulated the production of viral particles. These results suggest that SARS-CoV-2 may have acquired the potent virus-host interaction during its evolution mediated by viral protein phosphorylation. Moreover, Phos-tag technology can provide a useful means for analyzing the functional phosphorylation of viral proteins. SIGNIFICANCE: In this study, we aimed to investigate the functional phosphorylation of SARS-CoV-2 NP. For this purpose, we used Phos-tag technology to purify and enrich virus-derived phosphopeptides with high selectivity and reproducibility. This method can be particularly useful in analyzing viral phosphopeptides from cell culture supernatants that often contain high concentrations of fetal bovine serum and supplements. We newly identified an NP phosphorylation site at Ser79, which is important for Pin1 binding. Furthermore, we showed that the interaction between Pin1 and phosphorylated NP could enhance viral replication in a cell culture model.
Asunto(s)
Proteínas de la Nucleocápside , Fosfopéptidos , Cromatografía Liquida , Proteínas de la Nucleocápside de Coronavirus , Humanos , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Proteínas de la Nucleocápside/química , Fosfopéptidos/química , Fosfoproteínas , Fosforilación , Filogenia , Piridinas , Reproducibilidad de los Resultados , SARS-CoV-2 , Espectrometría de Masas en TándemAsunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Vacuna BNT162/uso terapéutico , COVID-19/prevención & control , SARS-CoV-2/inmunología , Adulto , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Técnicas Biosensibles , COVID-19/sangre , COVID-19/inmunología , Humanos , Técnicas Inmunológicas , Persona de Mediana Edad , SARS-CoV-2/aislamiento & purificación , Adulto JovenRESUMEN
The COVID-19 pandemic is an unprecedented threat to humanity that has provoked global health concerns. Since the etiopathogenesis of this illness is not fully characterized, the prognostic factors enabling treatment decisions have not been well documented. Accurately predicting the progression of the disease would aid in appropriate patient categorization and thus help determine the best treatment option. Here, we have introduced a proteomic approach utilizing data-independent acquisition mass spectrometry (DIA-MS) to identify the serum proteins that are closely associated with COVID-19 prognosis. Twenty-seven proteins were differentially expressed between severely ill COVID-19 patients with an adverse or favorable prognosis. Ingenuity Pathway Analysis revealed that 15 of the 27 proteins might be regulated by cytokine signaling relevant to interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF), and their differential expression was implicated in the systemic inflammatory response and in cardiovascular disorders. We further evaluated practical predictors of the clinical prognosis of severe COVID-19 patients. Subsequent ELISA assays revealed that CHI3L1 and IGFALS may serve as highly sensitive prognostic markers. Our findings can help formulate a diagnostic approach for accurately identifying COVID-19 patients with severe disease and for providing appropriate treatment based on their predicted prognosis.
Asunto(s)
Biomarcadores/sangre , Prueba Serológica para COVID-19/métodos , COVID-19/sangre , Perfilación de la Expresión Génica , Proteómica/métodos , Proteína 1 Similar a Quitinasa-3/metabolismo , Ensayo de Inmunoadsorción Enzimática , Cromatografía de Gases y Espectrometría de Masas , Regulación de la Expresión Génica , Humanos , Inflamación , Interleucina-1beta/biosíntesis , Interleucina-6/biosíntesis , Pronóstico , SARS-CoV-2 , Factor de Necrosis Tumoral alfa/biosíntesis , VirosisRESUMEN
The pandemic of COVID-19 caused by SARS-CoV-2 continues to spread despite the global efforts taken to control it. The 3C-like protease (3CLpro), the major protease of SARS-CoV-2, is one of the most interesting targets for antiviral drug development because it is highly conserved among SARS-CoVs and plays an important role in viral replication. Herein, we developed high throughput screening for SARS-CoV-2 3CLpro inhibitor based on AlphaScreen. We screened 91 natural product compounds and found that all-trans retinoic acid (ATRA), an FDA-approved drug, inhibited 3CLpro activity. The 3CLpro inhibitory effect of ATRA was confirmed in vitro by both immunoblotting and AlphaScreen with a 50% inhibition concentration (IC50) of 24.7 ± 1.65 µM. ATRA inhibited the replication of SARS-CoV-2 in VeroE6/TMPRSS2 and Calu-3 cells, with IC50 = 2.69 ± 0.09 µM in the former and 0.82 ± 0.01 µM in the latter. Further, we showed the anti-SARS-CoV-2 effect of ATRA on the currently circulating variants of concern (VOC); alpha, beta, gamma, and delta. These results suggest that ATRA may be considered as a potential therapeutic agent against SARS-CoV-2.
Asunto(s)
Antivirales/farmacología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , SARS-CoV-2/efectos de los fármacos , Tretinoina/farmacología , Animales , Línea Celular Tumoral , Chlorocebus aethiops , Inhibidores de Cisteína Proteinasa/farmacología , Proteína 58 DEAD Box/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos , Receptores Inmunológicos/metabolismo , SARS-CoV-2/enzimología , SARS-CoV-2/fisiología , Células Vero , Replicación Viral/efectos de los fármacosAsunto(s)
Técnicas Biosensibles , Prueba Serológica para COVID-19/instrumentación , COVID-19/diagnóstico , SARS-CoV-2/aislamiento & purificación , Antígenos Virales/sangre , Antígenos Virales/aislamiento & purificación , COVID-19/sangre , COVID-19/virología , Proteínas de la Nucleocápside de Coronavirus/inmunología , Humanos , Fosfoproteínas/inmunología , SARS-CoV-2/inmunología , Sensibilidad y EspecificidadRESUMEN
Objective: There is scarce evidence regarding the long-term persistence of neutralizing antibodies among coronavirus disease 2019 (COVID-19) survivors. This study determined neutralizing antibody titers (NT50) and antibodies against spike protein (SP) or nucleocapsid protein (NP) antigens approximately 6 months after the diagnosis of COVID-19. Methods: COVID-19 survivors in Japan were recruited. Serum samples and data related to patients' characteristics and COVID-19 history were collected. NT50 and titers of antibodies against NP and SP antigens were measured at 20-32 weeks after the first positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) test results. Factors associated with NT50 were identified using the multivariable linear regression and the correlations among NT50 and titers of immunoglobulin G (IgG) and total immunoglobulins (Igs) against NP and SP were assessed by Spearman's correlation. Results: Among 376 participants (median [range] days after testing positive for SARS-CoV-2, 180 (147-224); median [range] years of age, 50 (20-78); 188 [50%] male), most tested positive for NT50 (n = 367, 98%), SP-IgG (n = 344, 91%), SP-total Ig (n = 369, 98%), NP-IgG (n = 314, 84%), and NP-total Ig (n = 365, 97%). Regression analysis indicated that higher BMI, fever, and the requirement of mechanical ventilation or extracorporeal membrane oxygenation were significantly associated with higher NT50. Anti-SP antibodies correlated moderately with NT50 (Spearman's correlation: 0.63 for SP IgG; 0.57 for SP-total Ig), while the correlation was weak for anti-NP antibodies (0.37 for NP IgG; 0.32 for NP-total Ig). Conclusions: Most COVID-19 survivors had sustained neutralizing antibodies and tested positive for SP-total Ig and NP-total Ig approximately 6 months after infection.
RESUMEN
The ongoing coronavirus disease 2019 (COVID-19) pandemic is a major global public health concern. Although rapid point-of-care testing for detecting viral antigen is important for management of the outbreak, the current antigen tests are less sensitive than nucleic acid testing. In our current study, we produce monoclonal antibodies (mAbs) that exclusively react with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and exhibit no cross-reactivity with other human coronaviruses, including SARS-CoV. Molecular modeling suggests that the mAbs bind to epitopes present on the exterior surface of the nucleocapsid, making them suitable for detecting SARS-CoV-2 in clinical samples. We further select the optimal pair of anti-SARS-CoV-2 nucleocapsid protein (NP) mAbs using ELISA and then use this mAb pair to develop immunochromatographic assay augmented with silver amplification technology. Our mAbs recognize the variants of concern (501Y.V1-V3) that are currently in circulation. Because of their high performance, the mAbs of this study can serve as good candidates for developing antigen detection kits for COVID-19.
Asunto(s)
Anticuerpos Monoclonales/inmunología , Proteínas de la Nucleocápside de Coronavirus/inmunología , Epítopos/inmunología , Inmunoensayo/métodos , SARS-CoV-2/metabolismo , Animales , Reacciones Antígeno-Anticuerpo , COVID-19/patología , COVID-19/virología , Proteínas de la Nucleocápside de Coronavirus/genética , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Humanos , Inmunización , Ratones , Ratones Endogámicos BALB C , Fosfoproteínas/genética , Fosfoproteínas/inmunología , Fosfoproteínas/metabolismo , Sistemas de Atención de Punto , SARS-CoV-2/aislamiento & purificación , Plata/químicaRESUMEN
Type-I interferons (IFN-I) are the innate immune system's principal defense against viral infections. Human immunodeficiency virus-1 (HIV-1) has evolved several ways to suppress or evade the host's innate immunity in order to survive and replicate to sustain infection. Suppression of IFN-I is one among the multiple escape strategies used by HIV-1 to prevent its clearance. HIV-1 protease which helps in viral maturation has also been observed to cleave host cellular protein kinases. In this study we performed a comprehensive screening of a human kinase library using AlphaScreen assay and identified that TANK binding kinase-1 (TBK1) was cleaved by HIV-1 protease (PR). We demonstrate that PR cleaved TBK1 fails to phosphorylate IFN regulatory factor 3 (IRF3), thereby reducing the IFN-I promoter activity and further reveal that the PR mediated suppression of IFN-I could be counteracted by protease inhibitors (PI) in vitro. We have also revealed that mutations of HIV-1 PR that confer drug resistance to PIs reduce the enzyme's ability to cleave TBK1. The findings of this study unearth a direct link between HIV-1 PR activity and evasion of innate immunity by the virus, the possible physiological relevance of which warrants to be determined.
Asunto(s)
Anticuerpos Neutralizantes/análisis , Anticuerpos Antivirales/análisis , COVID-19/inmunología , COVID-19/virología , Pruebas de Neutralización/métodos , SARS-CoV-2/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Chlorocebus aethiops , Humanos , Oligopéptidos/inmunología , Pandemias , Células Vero , Proteínas Estructurales Virales/inmunología , Virión/inmunologíaAsunto(s)
Anticuerpos Antivirales/sangre , Betacoronavirus/aislamiento & purificación , Técnicas de Laboratorio Clínico , Infecciones por Coronavirus/diagnóstico , Neumonía Viral/diagnóstico , ARN Viral/análisis , Betacoronavirus/genética , Betacoronavirus/inmunología , Biomarcadores/sangre , COVID-19 , Prueba de COVID-19 , Infecciones por Coronavirus/virología , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Pandemias , Neumonía Viral/virología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2RESUMEN
OBJECTIVES: Serological tests for COVID-19 have been instrumental in studying the epidemiology of the disease. However, the performance of the currently available tests is plagued by the problem of variability. We have developed a high-throughput serological test capable of simultaneously detecting total immunoglobulins (Ig) and immunoglobulin G (IgG) against nucleocapsid protein (NP) and spike protein (SP) and report its performance in detecting COVID-19 in clinical samples. METHODS: We designed and prepared reagents for measuring NP-IgG, NP-Total Ig, SP-IgG, and SP-Total Ig (using N-terminally truncated NP (ΔN-NP) or receptor-binding domain (RBD) antigen) dedicated automated chemiluminescent enzyme immunoassay analyzer AIA-CL1200. After determining the basal thresholds based on 17 sera obtained from confirmed COVID-19 patients and 600 negative sera, the clinical validity of the assay was evaluated using independent 202 positive samples and 1,000 negative samples from healthy donors. RESULTS: All of the four test parameters showed 100% specificity individually (1,000/1,000; 95%CI, 99.63-100). The sensitivity of the assay increased proportionally to the elapsed time from symptoms onset, and all the tests achieved 100% sensitivity (153/153; 95%CI, 97.63-100) after 13 days from symptoms onset. NP-Total Ig was the earliest to attain maximal sensitivity among the other antibodies tested. CONCLUSION: Our newly developed serological testing exhibited 100% sensitivity and specificity after 13 days from symptoms onset. Hence, it could be used as a reliable method for accurate detection of COVID-19 patients and to evaluate seroprevalence and possibly for surrogate assessment of herd immunity.