Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Rev Esp Enferm Dig ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767013

RESUMEN

The case of a patient in the eighth decade of life who begins with dysphagia and progressive weight loss is presented, who underwent contrast-enhanced tomography where a tumor was observed in the esophagus, endoscopy with biopsy and a report of esophageal tuberculosis.

2.
FEBS J ; 291(11): 2423-2448, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38451841

RESUMEN

Oxidation of histone H3 at lysine 4 (H3K4ox) is catalyzed by lysyl oxidase homolog 2 (LOXL2). This histone modification is enriched in heterochromatin in triple-negative breast cancer (TNBC) cells and has been linked to the maintenance of compacted chromatin. However, the molecular mechanism underlying this maintenance is still unknown. Here, we show that LOXL2 interacts with RuvB-Like 1 (RUVBL1), RuvB-Like 2 (RUVBL2), Actin-like protein 6A (ACTL6A), and DNA methyltransferase 1associated protein 1 (DMAP1), a complex involved in the incorporation of the histone variant H2A.Z. Our experiments indicate that this interaction and the active form of RUVBL2 are required to maintain LOXL2-dependent chromatin compaction. Genome-wide experiments showed that H2A.Z, RUVBL2, and H3K4ox colocalize in heterochromatin regions. In the absence of LOXL2 or RUVBL2, global levels of the heterochromatin histone mark H3K9me3 were strongly reduced, and the ATAC-seq signal in the H3K9me3 regions was increased. Finally, we observed that the interplay between these series of events is required to maintain H3K4ox-enriched heterochromatin regions, which in turn is key for maintaining the oncogenic properties of the TNBC cell line tested (MDA-MB-231).


Asunto(s)
Aminoácido Oxidorreductasas , Heterocromatina , Histonas , Neoplasias de la Mama Triple Negativas , Femenino , Humanos , Aminoácido Oxidorreductasas/genética , Aminoácido Oxidorreductasas/metabolismo , Línea Celular Tumoral , Cromatina/metabolismo , Cromatina/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , Regulación Neoplásica de la Expresión Génica , Heterocromatina/metabolismo , Heterocromatina/genética , Histonas/metabolismo , Histonas/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo
3.
Nucleic Acids Res ; 52(5): 2242-2259, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38109318

RESUMEN

In budding yeast, fermentation is the most important pathway for energy production. Under low-glucose conditions, ethanol is used for synthesis of this sugar requiring a shift to respiration. This process is controlled by the transcriptional regulators Cat8, Sip4, Rds2 and Ert1. We characterized Gsm1 (glucose starvation modulator 1), a paralog of Rds2 and Ert1. Genome-wide analysis showed that Gsm1 has a DNA binding profile highly similar to Rds2. Binding of Gsm1 and Rds2 is interdependent at the gluconeogenic gene FBP1. However, Rds2 is required for Gsm1 to bind at other promoters but not the reverse. Gsm1 and Rds2 also bind to DNA independently of each other. Western blot analysis revealed that Rds2 controls expression of Gsm1. In addition, we showed that the DNA binding domains of Gsm1 and Rds2 bind cooperatively in vitro to the FBP1 promoter. In contrast, at the HAP4 gene, Ert1 cooperates with Rds2 for DNA binding. Mutational analysis suggests that Gsm1/Rds2 and Ert1/Rds2 bind to short common DNA stretches, revealing a novel mode of binding for this class of factors. Two-point mutations in a HAP4 site convert it to a Gsm1 binding site. Thus, Rds2 controls binding of Gsm1 at many promoters by two different mechanisms: regulation of Gsm1 levels and increased DNA binding by formation of heterodimers.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Factores de Transcripción , ADN/genética , ADN/metabolismo , Fermentación , Regulación Fúngica de la Expresión Génica , Glucosa/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Zinc/metabolismo
4.
bioRxiv ; 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37745343

RESUMEN

TFIIH is an essential transcription initiation factor for RNA polymerase II (RNApII). This multi-subunit complex comprises two modules that are physically linked by the subunit Tfb3 (MAT1 in metazoans). The TFIIH Core Module, with two DNA-dependent ATPases and several additional subunits, promotes DNA unwinding. The TFIIH Kinase Module phosphorylates Serine 5 of the C-terminal domain (CTD) of RNApII subunit Rpb1, a modification that coordinates exchange of initiation and early elongation factors. While it is not obvious why these two disparate activities are bundled into one factor, the connection may provide temporal coordination during early initiation. Here we show that Tfb3 can be split into two parts to uncouple the TFIIH modules. The resulting cells grow slower than normal, but are viable. Chromatin immunoprecipitation of the split TFIIH shows that the Core Module, but not the Kinase, is properly recruited to promoters. Instead of the normal promoter-proximal peak, high CTD Serine 5 phosphorylation is seen throughout transcribed regions. Therefore, coupling the TFIIH modules is necessary to localize and limit CTD kinase activity to early stages of transcription. These results are consistent with the idea that the two TFIIH modules began as independent functional entities that became connected by Tfb3 during early eukaryotic evolution.

5.
Trends Biochem Sci ; 48(11): 978-992, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37657993

RESUMEN

Eukaryotic transcription occurs on chromatin, where RNA polymerase II encounters nucleosomes during elongation. These nucleosomes must unravel for the DNA to enter the active site. However, in most transcribed genes, nucleosomes remain intact due to transcription-coupled chromatin assembly mechanisms. These mechanisms primarily involve the local reassembly of displaced nucleosomes to prevent (epi)genomic instability and the emergence of cryptic transcription. As a fail-safe mechanism, cells can assemble nucleosomes de novo, particularly in highly transcribed genes, but this may result in the loss of epigenetic information. This review examines transcription-coupled chromatin assembly, with an emphasis on studies in yeast and recent structural studies. These studies shed light on how elongation factors and histone chaperones coordinate to enable nucleosome recycling during transcription.

7.
Microbiol Spectr ; : e0255022, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36815792

RESUMEN

The incorporation of histone variant H2A.Z into nucleosomes creates specialized chromatin domains that regulate DNA-templated processes, such as gene transcription. In Saccharomyces cerevisiae, the diverging H2A.Z C terminus is thought to provide the H2A.Z exclusive functions. To elucidate the roles of this H2A.Z C terminus genome-wide, we used derivatives in which the C terminus was replaced with the corresponding region of H2A (ZA protein), or the H2A region plus a transcriptional activating peptide (ZA-rII'), with the intent of regenerating the H2A.Z-dependent regulation globally. The distribution of these H2A.Z derivatives indicates that the H2A.Z C-terminal region is crucial for both maintaining the occupation level of H2A.Z and the proper positioning of targeted nucleosomes. Interestingly, the specific contribution on incorporation efficiency versus nucleosome positioning varies enormously depending on the locus analyzed. Specifically, the role of H2A.Z in global transcription regulation relies on its C-terminal region. Remarkably, however, this mostly involves genes without a H2A.Z nucleosome in the promoter. Lastly, we demonstrate that the main chaperone complex which deposits H2A.Z to gene regulatory region (SWR1-C) is necessary to localize all H2A.Z derivatives at their specific loci, indicating that the differential association of these derivatives is not due to impaired interaction with SWR1-C. IMPORTANCE We provide evidence that the Saccharomyces cerevisiae C-terminal region of histone variant H2A.Z can mediate its special function in performing gene regulation by interacting with effector proteins and chaperones. These functional interactions allow H2A.Z not only to incorporate to very specific gene regulatory regions, but also to facilitate the gene expression process. To achieve this, we used a chimeric protein which lacks the native H2A.Z C-terminal region but contains an acidic activating region, a module that is known to interact with components of chromatin-remodeling entities and/or transcription modulators. We reasoned that because this activating region can fulfill the role of the H2A.Z C-terminal region, at least in part, the role of the latter would be to interact with these activating region targets.

8.
Nat Commun ; 14(1): 1135, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36854718

RESUMEN

Partitioning of active gene loci to the nuclear envelope (NE) is a mechanism by which organisms increase the speed of adaptation and metabolic robustness to fluctuating resources in the environment. In the yeast Saccharomyces cerevisiae, adaptation to nutrient depletion or other stresses, manifests as relocalization of active gene loci from nucleoplasm to the NE, resulting in more efficient transport and translation of mRNA. The mechanism by which this partitioning occurs remains a mystery. Here, we demonstrate that the yeast inositol depletion-responsive gene locus INO1 partitions to the nuclear envelope, driven by local histone acetylation-induced polymer-polymer phase separation from the nucleoplasmic phase. This demixing is consistent with recent evidence for chromatin phase separation by acetylation-mediated dissolution of multivalent histone association and fits a physical model where increased bending stiffness of acetylated chromatin polymer causes its phase separation from de-acetylated chromatin. Increased chromatin spring stiffness could explain nucleation of transcriptional machinery at active gene loci.


Asunto(s)
Cromatina , Membrana Nuclear , Saccharomyces cerevisiae , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Histonas/química , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Histona Acetiltransferasas/metabolismo , Biopolímeros/química , Biopolímeros/metabolismo
9.
Transcription ; 13(1-3): 16-38, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35485711

RESUMEN

The identification of FACT as a histone chaperone enabling transcription through chromatin in vitro has strongly shaped how its roles are envisioned. However, FACT has been implicated in essentially all aspects of chromatin biology, from transcription to DNA replication, DNA repair, and chromosome segregation. In this review, we focus on recent literature describing the role and mechanisms of FACT during transcription. We highlight the prime importance of FACT in preserving chromatin integrity during transcription and challenge its role as an elongation factor. We also review evidence for FACT's role as a cell-type/gene-specific regulator of gene expression and briefly summarize current efforts at using FACT inhibition as an anti-cancer strategy.


Asunto(s)
Proteínas del Grupo de Alta Movilidad , Chaperonas de Histonas , Cromatina/genética , Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Alta Movilidad/química , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Chaperonas de Histonas/química , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Nucleosomas , Factores de Elongación Transcripcional/metabolismo
10.
PLoS Genet ; 17(8): e1009529, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34383744

RESUMEN

The Mediator coactivator complex is divided into four modules: head, middle, tail, and kinase. Deletion of the architectural subunit Med16 separates core Mediator (cMed), comprising the head, middle, and scaffold (Med14), from the tail. However, the direct global effects of tail/cMed disconnection are unclear. We find that rapid depletion of Med16 downregulates genes that require the SAGA complex for full expression, consistent with their reported tail dependence, but also moderately overactivates TFIID-dependent genes in a manner partly dependent on the separated tail, which remains associated with upstream activating sequences. Suppression of TBP dynamics via removal of the Mot1 ATPase partially restores normal transcriptional activity to Med16-depleted cells, suggesting that cMed/tail separation results in an imbalance in the levels of PIC formation at SAGA-requiring and TFIID-dependent genes. We propose that the preferential regulation of SAGA-requiring genes by tailed Mediator helps maintain a proper balance of transcription between these genes and those more dependent on TFIID.


Asunto(s)
Adenosina Trifosfatasas/genética , Perfilación de la Expresión Génica/métodos , Complejo Mediador/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores Asociados con la Proteína de Unión a TATA/genética , Proteína de Unión a TATA-Box/metabolismo , Regulación Fúngica de la Expresión Génica , Mutación , Regiones Promotoras Genéticas , Análisis de Secuencia de ARN , Transactivadores , Transcripción Genética
11.
Mol Cell ; 81(17): 3542-3559.e11, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34380014

RESUMEN

The histone chaperone FACT occupies transcribed regions where it plays prominent roles in maintaining chromatin integrity and preserving epigenetic information. How it is targeted to transcribed regions, however, remains unclear. Proposed models include docking on the RNA polymerase II (RNAPII) C-terminal domain (CTD), recruitment by elongation factors, recognition of modified histone tails, and binding partially disassembled nucleosomes. Here, we systematically test these and other scenarios in Saccharomyces cerevisiae and find that FACT binds transcribed chromatin, not RNAPII. Through a combination of high-resolution genome-wide mapping, single-molecule tracking, and mathematical modeling, we propose that FACT recognizes the +1 nucleosome, as it is partially unwrapped by the engaging RNAPII, and spreads to downstream nucleosomes aided by the chromatin remodeler Chd1. Our work clarifies how FACT interacts with genes, suggests a processive mechanism for FACT function, and provides a framework to further dissect the molecular mechanisms of transcription-coupled histone chaperoning.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética/genética , Factores de Elongación Transcripcional/metabolismo , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/genética , Proteínas del Grupo de Alta Movilidad/genética , Chaperonas de Histonas/genética , Histonas/genética , Histonas/metabolismo , Chaperonas Moleculares/metabolismo , Nucleosomas/metabolismo , Unión Proteica , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Factores de Elongación Transcripcional/genética
12.
Elife ; 92020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-33226341

RESUMEN

Nuclear export of messenger RNAs (mRNAs) is intimately coupled to their synthesis. pre-mRNAs assemble into dynamic ribonucleoparticles as they are being transcribed, processed, and exported. The role of ubiquitylation in this process is increasingly recognized but, while a few E3 ligases have been shown to regulate nuclear export, evidence for deubiquitylases is currently lacking. Here we identified deubiquitylase Ubp15 as a regulator of nuclear export in Saccharomyces cerevisiae. Ubp15 interacts with both RNA polymerase II and the nuclear pore complex, and its deletion reverts the nuclear export defect of E3 ligase Rsp5 mutants. The deletion of UBP15 leads to hyper-ubiquitylation of the main nuclear export receptor Mex67 and affects its association with THO, a complex coupling transcription to mRNA processing and involved in the recruitment of mRNA export factors to nascent transcripts. Collectively, our data support a role for Ubp15 in coupling transcription to mRNA export.


Asunto(s)
Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , ARN Polimerasa II/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Endopeptidasas , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Espectrometría de Masas , Poro Nuclear/genética , Proteínas Nucleares/genética , Proteínas de Transporte Nucleocitoplasmático/genética , ARN Polimerasa II/genética , ARN Mensajero , Proteínas de Unión al ARN/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética
13.
Cell Rep ; 28(5): 1206-1218.e8, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31365865

RESUMEN

Genomic DNA is framed by additional layers of information, referred to as the epigenome. Epigenomic marks such as DNA methylation, histone modifications, and histone variants are concentrated on specific genomic sites, where they can both instruct and reflect gene expression. How this information is maintained, notably in the face of transcription, is not completely understood. Specifically, the extent to which modified histones themselves are retained through RNA polymerase II passage is unclear. Here, we show that several histone modifications are mislocalized when the transcription-coupled histone chaperones FACT or Spt6 are disrupted in Saccharomyces cerevisiae. In the absence of functional FACT or Spt6, transcription generates nucleosome loss, which is partially compensated for by the increased activity of non-transcription-coupled histone chaperones. The random incorporation of transcription-evicted modified histones scrambles epigenomic information. Our work highlights the importance of local recycling of modified histones by FACT and Spt6 during transcription in the maintenance of the epigenomic landscape.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Elongación Transcripcional/metabolismo , Proteínas de Unión al ADN/genética , Proteínas del Grupo de Alta Movilidad/genética , Chaperonas de Histonas/genética , Histonas/genética , Nucleosomas/genética , Nucleosomas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Elongación Transcripcional/genética
14.
Mol Cell ; 73(4): 655-669.e7, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30639244

RESUMEN

In Saccharomyces cerevisiae, transcription termination at protein-coding genes is coupled to the cleavage of the nascent transcript, whereas most non-coding RNA transcription relies on a cleavage-independent termination pathway involving Nrd1, Nab3, and Sen1 (NNS). Termination involves RNA polymerase II CTD phosphorylation, but a systematic analysis of the contribution of individual residues would improve our understanding of the role of the CTD in this process. Here we investigated the effect of mutating phosphorylation sites in the CTD on termination. We observed widespread termination defects at protein-coding genes in mutants for Ser2 or Thr4 but rare defects in Tyr1 mutants for this genes class. Instead, mutating Tyr1 led to widespread termination defects at non-coding genes terminating via NNS. Finally, we showed that Tyr1 is important for pausing in the 5' end of genes and that slowing down transcription suppresses termination defects. Our work highlights the importance of Tyr1-mediated pausing in NNS-dependent termination.


Asunto(s)
ADN Helicasas/metabolismo , Proteínas Nucleares/metabolismo , ARN Helicasas/metabolismo , ARN Polimerasa II/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Terminación de la Transcripción Genética , Sitios de Unión , ADN Helicasas/genética , Regulación Fúngica de la Expresión Génica , Mutación , Proteínas Nucleares/genética , Fosforilación , Unión Proteica , ARN Helicasas/genética , ARN Polimerasa II/genética , Proteínas de Unión al ARN/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Factores de Tiempo , Tirosina
15.
Trends Cell Biol ; 27(10): 765-783, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28778422

RESUMEN

Mediator is an essential, large, multisubunit, transcriptional co-activator highly conserved across eukaryotes. Mediator interacts with gene-specific transcription factors at enhancers as well as with the RNA polymerase II (RNAPII) transcription machinery bound at promoters. It also interacts with several other factors involved in various aspects of transcription, chromatin regulation, and mRNA processing. Hence, Mediator is at the nexus of RNAPII transcription, regulating its many steps and connecting transcription with co-transcriptional events. To achieve this flexible role, Mediator, which is divided into several functional modules, reorganizes its conformation and composition while making transient contacts with other components. Here, we review the mechanisms of action of Mediator and propose a unifying model for its function.


Asunto(s)
Complejo Mediador/genética , ARN Polimerasa II/genética , Transcripción Genética/genética , Animales , Cromatina/genética , Regulación de la Expresión Génica/genética , Humanos , Factores de Transcripción/genética
16.
Nucleic Acids Res ; 45(11): 6417-6426, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28383698

RESUMEN

Transcription can be quite disruptive for chromatin so cells have evolved mechanisms to preserve chromatin integrity during transcription, thereby preventing the emergence of cryptic transcripts from spurious promoter sequences. How these transcripts are regulated and processed remains poorly characterized. Notably, very little is known about the termination of cryptic transcripts. Here, we used RNA-Seq to identify and characterize cryptic transcripts in Spt6 mutant cells (spt6-1004) in Saccharomyces cerevisiae. We found polyadenylated cryptic transcripts running both sense and antisense relative to genes in this mutant. Cryptic promoters were enriched for TATA boxes, suggesting that the underlying DNA sequence defines the location of cryptic promoters. While intragenic sense cryptic transcripts terminate at the terminator of the genes that host them, we found that antisense cryptic transcripts preferentially terminate near the 3΄-end of the upstream gene. This finding led us to demonstrate that most terminators in yeast are bidirectional, leading to termination and polyadenylation of transcripts coming from both directions. We propose that S. cerevisiae has evolved this mechanism in order to prevent/attenuate spurious transcription from invading neighbouring genes, a feature that is particularly critical for organisms with small compact genomes.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Saccharomyces cerevisiae/genética , Transcripción Genética , Codón de Terminación , Genoma Fúngico , Poliadenilación , Regiones Promotoras Genéticas , Estabilidad del ARN , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo , TATA Box
17.
Methods Mol Biol ; 1528: 211-227, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27854024

RESUMEN

Chromatin immunoprecipitation coupled to DNA microarrays (ChIP-chip) is widely used in the chromatin field, notably to map the position of histone variants or histone modifications along the genome. Often, the position and the occupancy of these epigenetic marks are to be compared between different experiments. It is now increasingly recognized that such cross-sample comparison is better done using externally added exogenous controls for normalization but no such method has been described for ChIP-chip. Here we describe a spiking normalization strategy that makes use of phiX174 phage DNA as a spiked control for normalization of ChIP-chip signals across different experiments.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , Saccharomyces cerevisiae/genética , Cromatina/genética , Cromatina/metabolismo , Histonas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Procesamiento Proteico-Postraduccional/genética
18.
Mol Cell ; 64(3): 455-466, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27773677

RESUMEN

Mediator is a highly conserved transcriptional coactivator organized into four modules, namely Tail, Middle, Head, and Kinase (CKM). Previous work suggests regulatory roles for Tail and CKM, but an integrated model for these activities is lacking. Here, we analyzed the genome-wide distribution of Mediator subunits in wild-type and mutant yeast cells in which RNA polymerase II promoter escape is blocked, allowing detection of transient Mediator forms. We found that although all modules are recruited to upstream activated regions (UAS), assembly of Mediator within the pre-initiation complex is accompanied by the release of CKM. Interestingly, our data show that CKM regulates Mediator-UAS interaction rather than Mediator-promoter association. In addition, although Tail is required for Mediator recruitment to UAS, Tailless Mediator nevertheless interacts with core promoters. Collectively, our data suggest that the essential function of Mediator is mediated by Head and Middle at core promoters, while Tail and CKM play regulatory roles.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Complejo Mediador/genética , ARN Polimerasa II/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Factor de Transcripción TFIIB/genética , Sitios de Unión , Complejo Mediador/metabolismo , Modelos Moleculares , Regiones Promotoras Genéticas , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIIB/metabolismo , Iniciación de la Transcripción Genética , Activación Transcripcional
19.
FEBS J ; 283(23): 4263-4273, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27735137

RESUMEN

Methylation of histone H3 lysine 4 is linked to active transcription and can be removed by LSD1 or the JmjC domain-containing proteins by amino-oxidation or hydroxylation, respectively. Here we describe that its deamination can be catalyzed by lysyl oxidase-like 2 protein (LOXL2), presenting an unconventional chemical mechanism for H3K4 modification. Infrared spectroscopy and mass spectrometry analyses demonstrated that recombinant LOXL2 specifically deaminates trimethylated H3K4. Moreover, by regulating H3K4me3 deamination, LOXL2 activity is linked with the transcriptional control of the CDH1 gene. These results reveal the existence of further H3 modification as well as a novel mechanism for H3K4me3 demethylation. DATABASE: The GEO accession number for the data referred to this paper is GSE35600.


Asunto(s)
Aminoácido Oxidorreductasas/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Aminoácido Oxidorreductasas/genética , Antígenos CD , Western Blotting , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular , Línea Celular Tumoral , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Metilación , Oxidación-Reducción , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrofotometría Infrarroja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...