Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 298(7): 102148, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35716778

RESUMEN

Depletion of exogenous inositol in yeast results in rising levels of phosphatidic acid (PA) and is correlated with increased expression of genes containing the inositol-dependent upstream activating sequence promoter element (UASINO). INO1, encoding myo-inositol 3-phosphate synthase, is the most highly regulated of the inositol-dependent upstream activating sequence-containing genes, but its mechanism of regulation is not clear. In the current study, we determined the relative timing and kinetics of appearance of individual molecular species of PA following removal of exogenous inositol in actively growing wild type, pah1Δ, and ole1ts strains. We report that the pah1Δ strain, lacking the PA phosphatase, exhibits a delay of about 60 min in comparison to wildtype before initiating derepression of INO1 expression. The ole1ts mutant on the other hand, defective in fatty acid desaturation, when grown at a semirestrictive temperature, exhibited reduced synthesis of PA species 34:1 and elevated synthesis of PA species 32:1. Importantly, we found these changes in the fatty acid composition in the PA pool of the ole1ts strain were associated with reduced expression of INO1, indicating that synthesis of PA 34:1 is involved in optimal expression of INO1 in the absence of inositol. Using deuterium-labeled glycerol in short-duration labeling assays, we found that changes associated with PA species 34:1 were uniquely correlated with increased expression of INO1 in all three strains. These data indicate that the signal for activation of INO1 transcription is not necessarily the overall level of PA but rather levels of a specific species of newly synthesized PA 34:1.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Ácidos Grasos/metabolismo , Inositol/metabolismo , Ácidos Fosfatidicos/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
J Cell Sci ; 133(21)2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33033181

RESUMEN

Lipid droplets (LDs) are implicated in conditions of lipid and protein dysregulation. The fat storage-inducing transmembrane (FIT; also known as FITM) family induces LD formation. Here, we establish a model system to study the role of the Saccharomyces cerevisiae FIT homologues (ScFIT), SCS3 and YFT2, in the proteostasis and stress response pathways. While LD biogenesis and basal endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) remain unaltered in ScFIT mutants, SCS3 was found to be essential for proper stress-induced UPR activation and for viability in the absence of the sole yeast UPR transducer IRE1 Owing to not having a functional UPR, cells with mutated SCS3 exhibited an accumulation of triacylglycerol within the ER along with aberrant LD morphology, suggesting that there is a UPR-dependent compensatory mechanism that acts to mitigate lack of SCS3 Additionally, SCS3 was necessary to maintain phospholipid homeostasis. Strikingly, global protein ubiquitylation and the turnover of both ER and cytoplasmic misfolded proteins is impaired in ScFITΔ cells, while a screen for interacting partners of Scs3 identifies components of the proteostatic machinery as putative targets. Together, our data support a model where ScFITs play an important role in lipid metabolism and proteostasis beyond their defined roles in LD biogenesis.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Lípidos de la Membrana , Saccharomyces cerevisiae , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/genética , Homeostasis , Lípidos de la Membrana/metabolismo , Proteostasis , Saccharomyces cerevisiae/genética , Respuesta de Proteína Desplegada/genética
3.
J Biol Chem ; 292(45): 18713-18728, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-28924045

RESUMEN

In the yeast Saccharomyces cerevisiae, the Opi1p repressor controls the expression of INO1 via the Opi1p/Ino2p-Ino4p regulatory circuit. Inositol depletion favors Opi1p interaction with both Scs2p and phosphatidic acid at the endoplasmic reticulum (ER) membrane. Inositol supplementation, however, favors the translocation of Opi1p from the ER into the nucleus, where it interacts with the Ino2p-Ino4p complex, attenuating transcription of INO1 A strain devoid of Scs2p (scs2Δ) and a mutant, OPI1FFAT, lacking the ability to interact with Scs2p were utilized to examine the specific role(s) of the Opi1p-Scs2p interaction in the regulation of INO1 expression and overall lipid metabolism. Loss of the Opi1p-Scs2p interaction reduced INO1 expression and conferred inositol auxotrophy. Moreover, inositol depletion in strains lacking this interaction resulted in Opi1p being localized to sites of lipid droplet formation, coincident with increased synthesis of triacylglycerol. Supplementation of choline to inositol-depleted growth medium led to decreased TAG synthesis in all three strains. However, in strains lacking the Opi1p-Scs2p interaction, Opi1p remained in the nucleus, preventing expression of INO1 These data support the conclusion that a specific pool of phosphatidic acid, associated with lipid droplet formation in the perinuclear ER, is responsible for the initial rapid exit of Opi1p from the nucleus to the ER and is required for INO1 expression in the presence of choline. Moreover, the mitochondria-specific phospholipid, cardiolipin, was significantly reduced in both strains compromised for Opi1p-Scs2p interaction, indicating that this interaction is required for the transfer of phosphatidic acid from the ER to the mitochondria for cardiolipin synthesis.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Mio-Inositol-1-Fosfato Sintasa/metabolismo , Ácidos Fosfatidicos/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Cardiolipinas/metabolismo , Núcleo Celular/metabolismo , Colina/metabolismo , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Gotas Lipídicas , Metabolismo de los Lípidos , Proteínas de la Membrana/genética , Mutación , Mio-Inositol-1-Fosfato Sintasa/genética , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
4.
Elife ; 4: e07485, 2015 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-26609809

RESUMEN

Maintenance of energy homeostasis depends on the highly regulated storage and release of triacylglycerol primarily in adipose tissue, and excessive storage is a feature of common metabolic disorders. CIDEA is a lipid droplet (LD)-protein enriched in brown adipocytes promoting the enlargement of LDs, which are dynamic, ubiquitous organelles specialized for storing neutral lipids. We demonstrate an essential role in this process for an amphipathic helix in CIDEA, which facilitates embedding in the LD phospholipid monolayer and binds phosphatidic acid (PA). LD pairs are docked by CIDEA trans-complexes through contributions of the N-terminal domain and a C-terminal dimerization region. These complexes, enriched at the LD-LD contact site, interact with the cone-shaped phospholipid PA and likely increase phospholipid barrier permeability, promoting LD fusion by transference of lipids. This physiological process is essential in adipocyte differentiation as well as serving to facilitate the tight coupling of lipolysis and lipogenesis in activated brown fat.


Asunto(s)
Adipocitos Marrones/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Gotas Lipídicas/metabolismo , Ácidos Fosfatidicos/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/química , Sitios de Unión , Línea Celular , Ratones , Unión Proteica , Estructura Secundaria de Proteína
5.
Chem Phys Lipids ; 180: 23-43, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24418527

RESUMEN

This article focuses on discoveries of the mechanisms governing the regulation of glycerolipid metabolism and stress response signaling in response to the phospholipid precursor, inositol. The regulation of glycerolipid lipid metabolism in yeast in response to inositol is highly complex, but increasingly well understood, and the roles of individual lipids in stress response are also increasingly well characterized. Discoveries that have emerged over several decades of genetic, molecular and biochemical analyses of metabolic, regulatory and signaling responses of yeast cells, both mutant and wild type, to the availability of the phospholipid precursor, inositol are discussed.


Asunto(s)
Glicerol/metabolismo , Inositol/metabolismo , Metabolismo de los Lípidos , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Humanos , Inositol/biosíntesis , Mutación , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología
6.
J Biol Chem ; 288(39): 27861-71, 2013 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-23943620

RESUMEN

Depriving wild type yeast of inositol, a soluble precursor for phospholipid, phosphoinositide, and complex sphingolipid synthesis, activates the protein kinase C (PKC)-MAPK signaling pathway, which plays a key role in the activation of NAD(+)-dependent telomeric silencing. We now report that triggering PKC-MAPK signaling by inositol deprivation or by blocking inositol-containing sphingolipid synthesis with aureobasidin A results in increased telomeric silencing regulated by the MAPK, Slt2p, and the NAD(+)-dependent deacetylase, Sir2p. Consistent with the dependence on NAD(+) in Sir2p-regulated silencing, we found that inositol depletion induces the expression of BNA2, which is required for the de novo synthesis of NAD(+). Moreover, telomeric silencing is greatly reduced in bna2Δ and npt1Δ mutants, which are defective in de novo and salvage pathways for NAD(+) synthesis, respectively. Surprisingly, however, omitting nicotinic acid from the growth medium, which reduces cellular NAD(+) levels, leads to increased telomeric silencing in the absence of inositol and/or at high temperature. This increase in telomeric silencing in response to inositol starvation is correlated to chronological life span extension but is Sir2p-independent. We conclude that activation of the PKC-MAPK signaling by interruption of inositol sphingolipid synthesis leads to increased Sir2p-dependent silencing and is dependent upon the de novo and salvage pathways for NAD(+) synthesis but is not correlated with cellular NAD(+) levels.


Asunto(s)
Inositol/metabolismo , Sistema de Señalización de MAP Quinasas , Proteína Quinasa C/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo , Telómero/ultraestructura , Activación Enzimática , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Genes Reporteros , Mutación , Saccharomyces cerevisiae/metabolismo , Esfingolípidos/metabolismo , Temperatura
7.
Mol Genet Genomics ; 285(2): 125-49, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21136082

RESUMEN

Inositol auxotrophy (Ino(-) phenotype) in budding yeast has classically been associated with misregulation of INO1 and other genes involved in lipid metabolism. To identify all non-essential yeast genes that are necessary for growth in the absence of inositol, we carried out a genome-wide phenotypic screening for deletion mutants exhibiting Ino(-) phenotypes under one or more growth conditions. We report the identification of 419 genes, including 385 genes not previously reported, which exhibit this phenotype when deleted. The identified genes are involved in a wide range of cellular processes, but are particularly enriched in those affecting transcription, protein modification, membrane trafficking, diverse stress responses, and lipid metabolism. Among the Ino(-) mutants involved in stress response, many exhibited phenotypes that are strengthened at elevated temperature and/or when choline is present in the medium. The role of inositol in regulation of lipid metabolism and stress response signaling is discussed.


Asunto(s)
Inositol/metabolismo , Metabolismo de los Lípidos , Saccharomyces cerevisiae/genética , Transducción de Señal , Estrés Fisiológico , Estudio de Asociación del Genoma Completo , Mutación , Fenotipo , Saccharomyces cerevisiae/metabolismo
8.
J Biol Chem ; 285(53): 41947-60, 2010 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-20972263

RESUMEN

The protein kinase C (PKC)-MAPK signaling cascade is activated and is essential for viability when cells are starved for the phospholipid precursor inositol. In this study, we report that inhibiting inositol-containing sphingolipid metabolism, either by inositol starvation or treatment with agents that block sphingolipid synthesis, triggers PKC signaling independent of sphingoid base accumulation. Under these same growth conditions, a fluorescent biosensor that detects the necessary PKC signaling intermediate, phosphatidylinositol (PI)-4-phosphate (PI4P), is enriched on the plasma membrane. The appearance of the PI4P biosensor on the plasma membrane correlates with PKC activation and requires the PI 4-kinase Stt4p. Like other mutations in the PKC-MAPK pathway, mutants defective in Stt4p and the PI4P 5-kinase Mss4p, which generates phosphatidylinositol 4,5-bisphosphate, exhibit inositol auxotrophy, yet fully derepress INO1, encoding inositol-3-phosphate synthase. These observations suggest that inositol-containing sphingolipid metabolism controls PKC signaling by regulating access of the signaling lipids PI4P and phosphatidylinositol 4,5-bisphosphate to effector proteins on the plasma membrane.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa/metabolismo , Membrana Celular/metabolismo , Inositol/química , Proteína Quinasa C/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Esfingolípidos/química , Técnicas Biosensibles , Activación Enzimática , Regulación Fúngica de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Fenotipo , Transducción de Señal , Temperatura , Factores de Tiempo
9.
J Biol Chem ; 284(52): 36034-36046, 2009 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-19841481

RESUMEN

The Saccharomyces cerevisiae NTE1 gene encodes an evolutionarily conserved phospholipase B localized to the endoplasmic reticulum (ER) that degrades phosphatidylcholine (PC) generating glycerophosphocholine and free fatty acids. We show here that the activity of NTE1-encoded phospholipase B (Nte1p) prevents the attenuation of transcription of genes encoding enzymes involved in phospholipid synthesis in response to increased rates of PC synthesis by affecting the nuclear localization of the transcriptional repressor Opi1p. Nte1p activity becomes necessary for cells growing in inositol-free media under conditions of high rates of PC synthesis elicited by the presence of choline at 37 degrees C. The specific choline transporter encoded by the HNM1 gene is necessary for the burst of PC synthesis observed at 37 degrees C as follows: (i) Nte1p is dispensable in an hnm1Delta strain under these conditions, and (ii) there is a 3-fold increase in the rate of choline transport via the Hnm1p choline transporter upon a shift to 37 degrees C. Overexpression of NTE1 alleviated the inositol auxotrophy of a plethora of mutants, including scs2Delta, scs3Delta, ire1Delta, and hac1Delta among others. Overexpression of NTE1 sustained phospholipid synthesis gene transcription under conditions that normally repress transcription. This effect was also observed in a strain defective in the activation of free fatty acids for phosphatidic acid synthesis. No changes in the levels of phosphatidic acid were detected under conditions of altered expression of NTE1. Consistent with a synthetic impairment between challenged ER function and inositol deprivation, increased expression of NTE1 improved the growth of cells exposed to tunicamycin in the absence of inositol. We describe a new role for Nte1p toward membrane homeostasis regulating phospholipid synthesis gene transcription. We propose that Nte1p activity, by controlling PC abundance at the ER, affects lateral membrane packing and that this parameter, in turn, impacts the repressing transcriptional activity of Opi1p, the main regulator of phospholipid synthesis gene transcription.


Asunto(s)
Esterasas/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación Fúngica de la Expresión Génica/fisiología , Fosfolipasas/metabolismo , Fosfolípidos/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Transcripción Genética/fisiología , Transporte Biológico/fisiología , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/genética , Esterasas/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Fosfolipasas/genética , Fosfolípidos/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
10.
J Biol Chem ; 283(49): 34204-17, 2008 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-18842580

RESUMEN

The highly conserved yeast cell wall integrity mitogen-activated protein kinase pathway regulates cellular responses to cell wall and membrane stress. We report that this pathway is activated and essential for viability under growth conditions that alter both the abundance and pattern of synthesis and turnover of membrane phospholipids, particularly phosphatidylinositol and phosphatidylcholine. Mutants defective in this pathway exhibit a choline-sensitive inositol auxotrophy, yet fully derepress INO1 and other Opi1p-regulated genes when grown in the absence of inositol. Under these growth conditions, Mpk1p is transiently activated by phosphorylation and stimulates the transcription of known targets of Mpk1p signaling, including genes regulated by the Rlm1p transcription factor. mpk1Delta cells also exhibit severe defects in lipid metabolism, including an abnormal accumulation of phosphatidylcholine, diacylglycerol, triacylglycerol, and free sterols, as well as aberrant turnover of phosphatidylcholine. Overexpression of the NTE1 phospholipase B gene suppresses the choline-sensitive inositol auxotrophy of mpk1Delta cells, whereas overexpression of other phospholipase genes has no effect on this phenotype. These results indicate that an intact cell wall integrity pathway is required for maintaining proper lipid homeostasis in yeast, especially when cells are grown in the absence of inositol.


Asunto(s)
Pared Celular/enzimología , Lípidos/química , Sistema de Señalización de MAP Quinasas , Saccharomyces cerevisiae/enzimología , Membrana Celular/enzimología , Genotipo , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Fosfatidilcolinas/química , Fosfatidilinositoles/química , Fosfolípidos/química , Plásmidos/metabolismo , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Temperatura
11.
J Biol Chem ; 283(37): 25735-25751, 2008 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-18614533

RESUMEN

Seeking to better understand how membrane trafficking is coordinated with phospholipid synthesis in yeast, we investigated lipid synthesis in several Sec(-) temperature-sensitive mutants, including sec13-1. Upon shift of sec13-1 cells to the restrictive temperature of 37 degrees C, phospholipid synthesis decreased dramatically relative to the wild type control, whereas synthesis of neutral lipids, especially triacylglycerol (TAG), increased. When examined by fluorescence microscopy, the number of lipid droplets appeared to increase and formed aggregates in sec13-1 cells shifted to 37 degrees C. Electron microscopy confirmed the increase in lipid droplet number and revealed that many were associated with the vacuole. Analysis of lipid metabolism in strains lacking TAG synthase genes demonstrated that the activities of the products of these genes contribute to accumulation of TAG in sec13-1 cells after the shift to 37 degrees C. Furthermore, the permissive temperature for growth of the sec13-1 strain lacking TAG synthase genes was 3 degrees C lower than sec13-1 on several different growth media, indicating that the synthesis of TAG has physiological significance under conditions of secretory stress. Together these results suggest that following a block in membrane trafficking, yeast cells channel lipid metabolism from phospholipid synthesis into synthesis of TAG and other neutral lipids to form lipid droplets. We conclude that this metabolic switch provides a degree of protection to cells during secretory stress.


Asunto(s)
Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Fosfolípidos/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Citometría de Flujo , Lípidos/química , Microscopía Electrónica/métodos , Modelos Biológicos , Fosfolípidos/química , Desnaturalización Proteica , Saccharomyces cerevisiae/metabolismo , Temperatura , Factores de Tiempo , Triglicéridos/metabolismo
12.
Biochim Biophys Acta ; 1771(3): 241-54, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16920401

RESUMEN

The emerging field of lipidomics, driven by technological advances in lipid analysis, provides greatly enhanced opportunities to characterize, on a quantitative or semi-quantitative level, the entire spectrum of lipids, or lipidome, in specific cell types. When combined with advances in other high throughput technologies in genomics and proteomics, lipidomics offers the opportunity to analyze the unique roles of specific lipids in complex cellular processes such as signaling and membrane trafficking. The yeast system offers many advantages for such studies, including the relative simplicity of its lipidome as compared to mammalian cells, the relatively high proportion of structural and regulatory genes of lipid metabolism which have been assigned and the excellent tools for molecular genetic analysis that yeast affords. The current state of application of lipidomic approaches in yeast and the advantages and disadvantages of yeast for such studies are discussed in this report.


Asunto(s)
Lípidos/fisiología , Levaduras/fisiología , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Inositol/metabolismo , Membranas Intracelulares/química , Liasas Intramoleculares/genética , Liasas Intramoleculares/metabolismo , Metabolismo de los Lípidos , Lípidos de la Membrana/química , Ácidos Fosfatidicos/metabolismo , Transducción de Señal , Transcripción Genética
13.
J Biol Chem ; 281(33): 24070-83, 2006 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-16777852

RESUMEN

In many organisms the coordinated synthesis of membrane lipids is controlled by feedback systems that regulate the transcription of target genes. However, a complete description of the transcriptional changes that accompany the remodeling of membrane phospholipids has not been reported. To identify metabolic signaling networks that coordinate phospholipid metabolism with gene expression, we profiled the sequential and temporal changes in genome-wide expression that accompany alterations in phospholipid metabolism induced by inositol supplementation in yeast. This analysis identified six distinct expression responses, which included phospholipid biosynthetic genes regulated by Opi1p, endoplasmic reticulum (ER) luminal protein folding chaperone and oxidoreductase genes regulated by the unfolded protein response pathway, lipid-remodeling genes regulated by Mga2p, as well as genes involved in ribosome biogenesis, cytosolic stress response, and purine and amino acid metabolism. We also report that the unfolded protein response pathway is rapidly inactivated by inositol supplementation and demonstrate that the response of the unfolded protein response pathway to inositol is separable from the response mediated by Opi1p. These data indicate that altering phospholipid metabolism produces signals that are relayed through numerous distinct ER-to-nucleus signaling pathways and, thereby, produce an integrated transcriptional response. We propose that these signals are generated in the ER by increased flux through the pathway of phosphatidylinositol synthesis.


Asunto(s)
Núcleo Celular/fisiología , Retículo Endoplásmico/fisiología , Regulación Fúngica de la Expresión Génica , Fosfolípidos/metabolismo , Saccharomyces cerevisiae/fisiología , Transducción de Señal/fisiología , Aminoácidos/genética , Aminoácidos/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Núcleo Celular/genética , Retículo Endoplásmico/genética , Ácido Graso Desaturasas/fisiología , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/fisiología , Inositol/farmacología , Proteínas de la Membrana/metabolismo , Familia de Multigenes , Oxígeno/fisiología , Pliegue de Proteína , Purinas/metabolismo , Proteínas Represoras/biosíntesis , Proteínas Represoras/genética , Proteínas Represoras/fisiología , Elementos de Respuesta/genética , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Estearoil-CoA Desaturasa , Transactivadores/biosíntesis , Transactivadores/genética , Transactivadores/fisiología , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Factores de Transcripción/fisiología
14.
J Biol Chem ; 281(32): 22773-85, 2006 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-16777854

RESUMEN

The addition of inositol to actively growing yeast cultures causes a rapid increase in the rate of synthesis of phosphatidylinositol and, simultaneously, triggers changes in the expression of hundreds of genes. We now demonstrate that the addition of inositol to yeast cells growing in the presence of choline leads to a dramatic reprogramming of cellular lipid synthesis and turnover. The response to inositol includes a 5-6-fold increase in cellular phosphatidylinositol content within a period of 30 min. The increase in phosphatidylinositol content appears to be dependent upon fatty acid synthesis. Phosphatidylcholine turnover increased rapidly following inositol addition, a response that requires the participation of Nte1p, an endoplasmic reticulum-localized phospholipase B. Mass spectrometry revealed that the acyl species composition of phosphatidylinositol is relatively constant regardless of supplementation with inositol or choline, whereas phosphatidylcholine acyl species composition is influenced by both inositol and choline. In medium containing inositol, but lacking choline, high levels of dimyristoylphosphatidylcholine were detected. Within 60 min following the addition of inositol, dimyristoylphosphatidylcholine levels had decreased from approximately 40% of total phosphatidylcholine to a basal level of less than 5%. nte1Delta cells grown in the absence of inositol and in the presence of choline exhibited lower levels of dimyristoylphosphatidylcholine than wild type cells grown under these same conditions, but these levels remained largely constant after the addition of inositol. These results are discussed in relationship to transcriptional regulation known to be linked to lipid metabolism in yeast.


Asunto(s)
Inositol/química , Metabolismo de los Lípidos , Lípidos/química , Saccharomyces cerevisiae/metabolismo , Membrana Celular/metabolismo , Cerulenina/química , Genes Fúngicos , Cinética , Lisofosfolipasa/química , Espectrometría de Masas , Modelos Químicos , Fosfolípidos/química , Espectrometría de Masa por Ionización de Electrospray , Transcripción Genética
15.
J Biol Chem ; 280(10): 9106-18, 2005 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-15611057

RESUMEN

In the yeast Saccharomyces cerevisiae, the transcription of many genes encoding enzymes of phospholipid biosynthesis are repressed in cells grown in the presence of the phospholipid precursors inositol and choline. A genome-wide approach using cDNA microarray technology was used to profile the changes in the expression of all genes in yeast that respond to the exogenous presence of inositol and choline. We report that the global response to inositol is completely distinct from the effect of choline. Whereas the effect of inositol on gene expression was primarily repressing, the effect of choline on gene expression was activating. Moreover, the combination of inositol and choline increased the number of repressed genes compared with inositol alone and enhanced the repression levels of a subset of genes that responded to inositol. In all, 110 genes were repressed in the presence of inositol and choline. Two distinct sets of genes exhibited differential expression in response to inositol or the combination of inositol and choline in wild-type cells. One set of genes contained the UASINO sequence and were bound by Ino2p and Ino4p. Many of these genes were also negatively regulated by OPI1, suggesting a common regulatory mechanism for Ino2p, Ino4p, and Opi1p. Another nonoverlapping set of genes was coregulated by the unfolded protein response pathway, an ER-localized stress response pathway, but was not dependent on OPI1 and did not show further repression when choline was present together with inositol. These results suggest that inositol is the major effector of target gene expression, whereas choline plays a minor role.


Asunto(s)
Colina/farmacología , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Genoma Fúngico , Inositol/farmacología , Proteínas Represoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Transactivadores/genética , Factores de Transcripción/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Modelos Biológicos , Fosfolípidos/biosíntesis , Desnaturalización Proteica , Pliegue de Proteína , Proteínas Recombinantes/metabolismo
16.
Genetics ; 168(4): 1899-913, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15371354

RESUMEN

The unfolded protein response pathway (UPR) enables the cell to cope with the buildup of unfolded proteins in the endoplasmic reticulum (ER). UPR loss-of-function mutants, hac1Delta and ire1Delta, are also inositol auxotrophs, a phenotype associated with defects in expression of INO1, the most highly regulated of a set of genes encoding enzymes of phospholipid metabolism. We now demonstrate that the UPR plays a functional role in membrane trafficking under conditions of secretory stress in yeast. Mutations conferring a wide range of membrane trafficking defects exhibited negative genetic interaction when combined with ire1Delta and hac1Delta. At semipermissive temperatures, carboxypeptidase Y transit time to the vacuole was slower in Sec(-) cells containing an ire1Delta or hac1Delta mutation than in Sec(-) cells with an intact UPR. The UPR was induced in Sec(-) cells defective in subcellular membrane trafficking events ranging from ER vesicle trafficking to distal secretion and in erg6Delta cells challenged with brefeldin A. However, the high levels of UPR induction observed under these conditions were not correlated with elevated INO1 expression. Indeed, many of the Sec(-) mutants that had elevated UPR expression at semipermissive growth temperatures failed to achieve wild-type levels of INO1 expression under these same conditions.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Mio-Inositol-1-Fosfato Sintasa/genética , Saccharomyces cerevisiae/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Membrana Celular/metabolismo , Cinética , Metabolismo de los Lípidos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Mutación , Mio-Inositol-1-Fosfato Sintasa/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas/fisiología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vacuolas/metabolismo
17.
Bioessays ; 24(7): 584-7, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12111718

RESUMEN

In animal cells, the Golgi complex undergoes reversible disassembly during mitosis. The disassembly/reassembly process has been intensively studied in order to understand the mechanisms that govern organelle assembly and inheritance during cell division. A long-standing controversy in the field has been whether formation of Golgi structure is template-mediated or self-organizes from components of the endoplasmic reticulum. A recent study1 however, has demonstrated that a subset of proteins that form a putative Golgi matrix can be inherited during cell division in the absence of membrane input from the endoplasmic reticulum. The outcome of this study suggests that a templating mechanism for the formation of Golgi structure may exist. This study has important implications for understanding mechanisms that govern Golgi biogenesis.


Asunto(s)
Aparato de Golgi/metabolismo , Mitosis/fisiología , Animales , Autoantígenos , Brefeldino A/farmacología , Retículo Endoplásmico/metabolismo , Aparato de Golgi/efectos de los fármacos , Proteínas de la Matriz de Golgi , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Inhibidores de la Síntesis de la Proteína/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...