Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2875, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570497

RESUMEN

The characterization of protein-protein interactions (PPIs) is fundamental to the understanding of biochemical processes. Many methods have been established to identify and study direct PPIs; however, screening and investigating PPIs involving large or poorly soluble proteins remains challenging. Here, we introduce ReLo, a simple, rapid, and versatile cell culture-based method for detecting and investigating interactions in a cellular context. Our experiments demonstrate that ReLo specifically detects direct binary PPIs. Furthermore, we show that ReLo bridging experiments can also be used to determine the binding topology of subunits within multiprotein complexes. In addition, ReLo facilitates the identification of protein domains that mediate complex formation, allows screening for interfering point mutations, and it is sensitive to drugs that mediate or disrupt an interaction. In summary, ReLo is a simple and rapid alternative for the study of PPIs, especially when studying structurally complex proteins or when established methods fail.


Asunto(s)
Mapeo de Interacción de Proteínas , Proteínas , Mapeo de Interacción de Proteínas/métodos , Proteínas/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(32): e2304385120, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37523566

RESUMEN

Drosophila Smaug and its orthologs comprise a family of mRNA repressor proteins that exhibit various functions during animal development. Smaug proteins contain a characteristic RNA-binding sterile-α motif (SAM) domain and a conserved but uncharacterized N-terminal domain (NTD). Here, we resolved the crystal structure of the NTD of the human SAM domain-containing protein 4A (SAMD4A, a.k.a. Smaug1) to 1.6 Å resolution, which revealed its composition of a homodimerization D subdomain and a subdomain with similarity to a pseudo-HEAT-repeat analogous topology (PHAT) domain. Furthermore, we show that Drosophila Smaug directly interacts with the Drosophila germline inducer Oskar and with the Hedgehog signaling transducer Smoothened through its NTD. We determined the crystal structure of the NTD of Smaug in complex with a Smoothened α-helical peptide to 2.0 Å resolution. The peptide binds within a groove that is formed by both the D and PHAT subdomains. Structural modeling supported by experimental data suggested that an α-helix within the disordered region of Oskar binds to the NTD of Smaug in a mode similar to Smoothened. Together, our data uncover the NTD of Smaug as a peptide-binding domain.


Asunto(s)
Proteínas de Drosophila , Drosophila , Proteínas de Unión al ARN , Proteínas Represoras , Animales , Humanos , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células Germinativas/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Receptores Acoplados a Proteínas G
3.
Nucleic Acids Res ; 51(8): 3950-3970, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36951092

RESUMEN

Posttranscriptional regulation of the maternal nanos mRNA is essential for the development of the anterior - posterior axis of the Drosophila embryo. The nanos RNA is regulated by the protein Smaug, which binds to Smaug recognition elements (SREs) in the nanos 3'-UTR and nucleates the assembly of a larger repressor complex including the eIF4E-T paralog Cup and five additional proteins. The Smaug-dependent complex represses translation of nanos and induces its deadenylation by the CCR4-NOT deadenylase. Here we report an in vitro reconstitution of the Drosophila CCR4-NOT complex and Smaug-dependent deadenylation. We find that Smaug by itself is sufficient to cause deadenylation by the Drosophila or human CCR4-NOT complexes in an SRE-dependent manner. CCR4-NOT subunits NOT10 and NOT11 are dispensable, but the NOT module, consisting of NOT2, NOT3 and the C-terminal part of NOT1, is required. Smaug interacts with the C-terminal domain of NOT3. Both catalytic subunits of CCR4-NOT contribute to Smaug-dependent deadenylation. Whereas the CCR4-NOT complex itself acts distributively, Smaug induces a processive behavior. The cytoplasmic poly(A) binding protein (PABPC) has a minor inhibitory effect on Smaug-dependent deadenylation. Among the additional constituents of the Smaug-dependent repressor complex, Cup also facilitates CCR4-NOT-dependent deadenylation, both independently and in cooperation with Smaug.


Asunto(s)
Proteínas de Drosophila , Animales , Humanos , Proteínas de Drosophila/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Drosophila/genética , Drosophila/metabolismo , Regulación de la Expresión Génica , Ribonucleasas/genética , Ribonucleasas/metabolismo , Receptores CCR4/genética
4.
Biol Chem ; 402(1): 7-23, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33544496

RESUMEN

The LOTUS domain (also known as OST-HTH) is a highly conserved protein domain found in a variety of bacteria and eukaryotes. In animals, the LOTUS domain is present in the proteins Oskar, TDRD5/Tejas, TDRD7/TRAP/Tapas, and MARF1/Limkain B1, all of which play essential roles in animal development, in particular during oogenesis and/or spermatogenesis. This review summarizes the diverse biological as well as molecular functions of LOTUS-domain proteins and discusses their roles as helicase effectors, post-transcriptional regulators, and critical cofactors of piRNA-mediated transcript silencing.


Asunto(s)
Proteínas/metabolismo , Animales , Humanos , Modelos Moleculares , Dominios Proteicos , Proteínas/química
5.
Genes Dev ; 31(9): 939-952, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28536148

RESUMEN

DEAD-box RNA helicases play important roles in a wide range of metabolic processes. Regulatory proteins can stimulate or block the activity of DEAD-box helicases. Here, we show that LOTUS (Limkain, Oskar, and Tudor containing proteins 5 and 7) domains present in the germline proteins Oskar, TDRD5 (Tudor domain-containing 5), and TDRD7 bind and stimulate the germline-specific DEAD-box RNA helicase Vasa. Our crystal structure of the LOTUS domain of Oskar in complex with the C-terminal RecA-like domain of Vasa reveals that the LOTUS domain occupies a surface on a DEAD-box helicase not implicated previously in the regulation of the enzyme's activity. We show that, in vivo, the localization of Drosophila Vasa to the nuage and germ plasm depends on its interaction with LOTUS domain proteins. The binding and stimulation of Vasa DEAD-box helicases by LOTUS domains are widely conserved.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Células Germinativas/metabolismo , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/crecimiento & desarrollo , Animales Modificados Genéticamente/metabolismo , Células Cultivadas , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/genética , Drosophila/genética , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Femenino , Regulación Enzimológica de la Expresión Génica , Conformación Proteica , Dominios Proteicos
6.
Cell Rep ; 12(4): 587-98, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26190108

RESUMEN

In many animals, the germ plasm segregates germline from soma during early development. Oskar protein is known for its ability to induce germ plasm formation and germ cells in Drosophila. However, the molecular basis of germ plasm formation remains unclear. Here, we show that Oskar is an RNA-binding protein in vivo, crosslinking to nanos, polar granule component, and germ cell-less mRNAs, each of which has a role in germline formation. Furthermore, we present high-resolution crystal structures of the two Oskar domains. RNA-binding maps in vitro to the C-terminal domain, which shows structural similarity to SGNH hydrolases. The highly conserved N-terminal LOTUS domain forms dimers and mediates Oskar interaction with the germline-specific RNA helicase Vasa in vitro. Our findings suggest a dual function of Oskar in RNA and Vasa binding, providing molecular clues to its germ plasm function.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Drosophila/química , Datos de Secuencia Molecular , Unión Proteica , ARN Mensajero/metabolismo
7.
Methods Mol Biol ; 1125: 297-311, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24590798

RESUMEN

Deadenylation is the removal of poly(A) tails from mRNA. This chapter presents two methods to assay deadenylation in vitro. The first is a quick and quantitative assay for the degradation of radiolabeled poly(A) that can easily be adapted to be used for many different enzymes. The second method uses an extract from Drosophila embryos to catalyze the deadenylation of an RNA dependent on a specific sequence that also directs deadenylation in vivo.


Asunto(s)
Poli A/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , Animales , Drosophila/genética
8.
J Biol Chem ; 288(4): 2441-51, 2013 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-23223233

RESUMEN

Turnover of mRNA releases, in addition to the four regular nucleoside monophosphates, the methylated cap nucleotide in the form of 7-methylguanosine monophosphate (m(7)GMP) or diphosphate (m(7)GDP). The existence of pathways to eliminate the modified nucleotide seems likely, as its incorporation into nucleic acids is undesirable. Here we describe a novel 5' nucleotidase from Drosophila that cleaves m(7)GMP to 7-methylguanosine and inorganic phosphate. The enzyme, encoded by the predicted gene CG3362, also efficiently dephosphorylates CMP, although with lower apparent affinity; UMP and the purine nucleotides are poor substrates. The enzyme is inhibited by elevated concentrations of AMP and also cleaves m(7)GDP to the nucleoside and two inorganic phosphates, albeit less efficiently. CG3362 has equivalent sequence similarity to two human enzymes, cytosolic nucleotidase III (cNIII) and the previously uncharacterized cytosolic nucleotidase III-like (cNIII-like). We show that cNIII-like also displays 5' nucleotidase activity with a high affinity for m(7)GMP. CMP is a slightly better substrate but again with a higher K(m). The activity of cNIII-like is stimulated by phosphate. In contrast to cNIII-like, cNIII and human cytosolic nucleotidase II do not accept m(7)GMP as a substrate. We suggest that the m(7)G-specific nucleotidases protect cells against undesired salvage of m(7)GMP and its incorporation into nucleic acids.


Asunto(s)
GMP Cíclico/química , Nucleotidasas/química , Secuencia de Aminoácidos , Animales , Cromatografía Líquida de Alta Presión/métodos , Reactivos de Enlaces Cruzados/química , Drosophila melanogaster , Humanos , Cinética , Lisina/química , Datos de Secuencia Molecular , Fosforilación , ARN Mensajero/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Rayos Ultravioleta , Uridina Monofosfato/química
9.
EMBO J ; 30(1): 90-103, 2011 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-21081899

RESUMEN

The nanos (nos) mRNA encodes the posterior determinant of the Drosophila embryo. Translation of the RNA is repressed throughout most of the embryo by the protein Smaug binding to Smaug recognition elements (SREs) in the 3' UTR. Translation is locally activated at the posterior pole by Oskar. This paper reports that the SREs govern the time- and ATP-dependent assembly of an exceedingly stable repressed ribonucleoprotein particle (RNP) in embryo extract. Repression can be virtually complete. Smaug and its co-repressor Cup as well as Trailer hitch and the DEAD box protein Me31B are part of the repressed RNP. The initiation factor eIF4G is specifically displaced, and 48S pre-initiation complex formation is inhibited. However, later steps in translation initiation are also sensitive to SRE-dependent inhibition. These data confirm several previously untested predictions of a current model for Cup-dependent repression but also suggest that the Cup model by itself is insufficient to explain translational repression of the nos RNA. In the embryo extract, recombinant Oskar relieves translational repression and deadenylation by preventing Smaug's binding to the SREs.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/embriología , Embrión no Mamífero/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Regiones no Traducidas 3' , Animales , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Factor 4G Eucariótico de Iniciación/metabolismo , Regulación del Desarrollo de la Expresión Génica , Unión Proteica , ARN Mensajero/química , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas Recombinantes/metabolismo , Proteínas Represoras/genética
10.
Methods Enzymol ; 448: 107-18, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19111173

RESUMEN

Deadenylation initiates degradation of most mRNAs in eukaryotes. Regulated deadenylation of an mRNA plays an important role in translation control as well, especially during animal oogenesis and early embryonic development. To investigate the mechanism of sequence-dependent deadenylation, we established an in vitro system derived from 0- to 2-h-old Drosophila embryos. These extracts faithfully reproduce several aspects of the regulation of nanos mRNA: They display translation repression and deadenylation both mediated by the same sequences within the nanos 3' UTR. Here, we describe detailed protocols for preparing Drosophila embryo extracts, and their use in deadenylation assays exemplified with exogenous RNA substrates containing the nanos 3' UTR.


Asunto(s)
Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Embrión no Mamífero/metabolismo , Poli A/metabolismo , Adenina/metabolismo , Animales , Extractos Celulares , Sistema Libre de Células , Drosophila melanogaster/genética , Embrión no Mamífero/embriología , Humanos , Poliadenilación , ARN/genética , ARN/metabolismo , Especificidad por Sustrato
11.
J Biol Chem ; 281(35): 25124-33, 2006 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-16793774

RESUMEN

Shortening of the poly(A) tail (deadenylation) is the first and often rate-limiting step in the degradation pathway of most eukaryotic mRNAs and is also used as a means of translational repression, in particular in early embryonic development. The nanos mRNA is translationally repressed by the protein Smaug in Drosophila embryos. The RNA has a short poly(A) tail at steady state and decays gradually during the first 2-3 h of development. Smaug has recently also been implicated in mRNA deadenylation. To study the mechanism of sequence-dependent deadenylation, we have developed a cell-free system from Drosophila embryos that displays rapid deadenylation of nanos mRNA. The Smaug response elements contained in the nanos 3'-untranslated region are necessary and sufficient to induce deadenylation; thus, Smaug is likely to be involved. Unexpectedly, deadenylation requires the presence of an ATP regenerating system. The activity can be pelleted by ultracentrifugation, and both the Smaug protein and the CCR4.NOT complex, a known deadenylase, are enriched in the active fraction. The same extracts show pronounced translational repression mediated by the Smaug response elements. RNAs lacking a poly(A) tail are poorly translated in the extract; therefore, SRE-dependent deadenylation contributes to translational repression. However, repression is strong even with RNAs either bearing a poly(A) tract that cannot be removed or lacking poly(A) altogether; thus, an additional aspect of translational repression functions independently of deadenylation.


Asunto(s)
Adenosina Trifosfato/química , Proteínas de Drosophila/fisiología , Drosophila/embriología , Proteínas de Unión al ARN/fisiología , Regiones no Traducidas 3' , Animales , Bioquímica/métodos , Sistema Libre de Células , Proteínas de Drosophila/metabolismo , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...