RESUMEN
BACKGROUND: Structural studies on CYP2B enzymes identified some of the features that are related to their high plasticity. The aim of this work was to understand further the possible relationships between combinations of structural elements and functions by linking shift in substrate specificity with sequence element swaps between CYP2B6 and CYP2B11. METHODS: A series of 15 chimeras in which a small CYP2B6 sequence segment was swapped with its equivalent in CYP2B11 were constructed. All chimeras produced were thus mostly of CYP2B11 sequence. Time course studies were carried out with two typical CYP2B substrates, cyclophosphamide and 7-ethoxy-4-trifluoromethylcoumarin. Steady-state kinetic parameters were determined for all chimeras expressed in yeast. RESULTS: Most of the chimeras exhibit a high affinity for cyclophosphamide, as CYP2B11 does. A few exhibit an affinity similar to that of CYP2B6 without altered behavior toward the other substrate assayed. The swapped elements that control this specificity shift are discussed in terms of F'/G' cassette role and substrate access channels. CONCLUSIONS: Some sequence segments control precisely the shift in affinity for cyclophosphamide between CYP2B6, which has a typical low affinity, and CYP2B11 which has a typical high affinity. GENERAL SIGNIFICANCE: The result provides a new basis for determining the structural elements that control functions in complex enzymes.
Asunto(s)
Hidrocarburo de Aril Hidroxilasas/metabolismo , Citocromo P-450 CYP2B6/metabolismo , Esteroide Hidroxilasas/metabolismo , Animales , Hidrocarburo de Aril Hidroxilasas/química , Hidrocarburo de Aril Hidroxilasas/genética , Cumarinas/metabolismo , Ciclofosfamida/metabolismo , Citocromo P-450 CYP2B6/química , Citocromo P-450 CYP2B6/genética , Familia 2 del Citocromo P450 , Perros , Humanos , Cinética , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Esteroide Hidroxilasas/química , Esteroide Hidroxilasas/genética , Relación Estructura-Actividad , Especificidad por SustratoRESUMEN
Combinatorial libraries coding for mosaic enzymes with predefined crossover points constitute useful tools to address and model structure-function relationships and for functional optimization of enzymes based on multivariate statistics. The presented method, called sequence-independent generation of a chimera-ordered library (SIGNAL), allows easy shuffling of any predefined amino acid segment between two or more proteins. This method is particularly well adapted to the exchange of protein structural modules. The procedure could also be well suited to generate ordered combinatorial libraries independent of sequence similarities in a robotized manner. Sequence segments to be recombined are first extracted by PCR from a single-stranded template coding for an enzyme of interest using a biotin-avidin-based method. This technique allows the reduction of parental template contamination in the final library. Specific PCR primers allow amplification of two complementary mosaic DNA fragments, overlapping in the region to be exchanged. Fragments are finally reassembled using a fusion PCR. The process is illustrated via the construction of a set of mosaic CYP2B enzymes using this highly modular approach.