Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Neurobiol ; 60(2): 836-850, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36378470

RESUMEN

Transient receptor potential melastatin 7 (TRPM7) is a ubiquitously expressed divalent cation channel that plays a key role in cell functions such as ion homeostasis, cell proliferation, survival, and cytoskeletal dynamics and mediates cells death in hypoxic and ischemic conditions. Previously, TRPM7 was found to play a role in the neurite outgrowth and maturation of primary hippocampal neurons. Either knockdown of TRPM7 with target-specific shRNA or blocking channel conductance by a specific blocker waixenicin A enhanced axonal outgrowth in the primary neuronal culture. In this study, we investigated whether and how TPRM7 is involved in hypoxia-altered neurite outgrowth patterns in E16 hippocampal neuron cultures. We demonstrate that short-term hypoxia activated the MEK/ERK and PI3K/Akt pathways, reduced TRPM7 activity, and enhanced axonal outgrowth of neuronal cultures. On the other hand, long-term hypoxia caused a progressive retraction of axons and dendrites that could be attenuated by the TRPM7-specific inhibitor waixenicin A. Further, we demonstrate that in the presence of astrocytes, axonal retraction in long-term hypoxic conditions was enhanced, and TRPM7 block by waixenicin A prevented this retraction. Our data demonstrate the effect of hypoxia on TRPM7 activity and axonal outgrowth/retraction in cultures with or without astrocytes present.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Canales Catiónicos TRPM , Hipoxia , Proyección Neuronal , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Canales Catiónicos TRPM/metabolismo
2.
Eur J Neurosci ; 55(6): 1483-1491, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35277895

RESUMEN

Glioblastoma (GBM) is the most prevalent and aggressive type of primary human brain tumours originating in the central nervous system. Despite the fact that current treatments involve surgery, chemotherapy (Temozolomide), and radiation therapy, the prognosis for patients diagnosed with GBM remains extremely poor. The standard treatment is not only unable to completely eradicate the tumour cells, but also tumour recurrence after surgical resection presents a major challenge. Furthermore, adjuvant therapies including radiation and chemotherapy have high cytotoxicity which causes extensive damage to surrounding healthy tissues and treatment is usually halted before GBM is fully eradicated. Finally, most GBM cases demonstrate temozolomide resistance, a common reason for GBM treatment failure. Therefore, there is an urgent need to develop a suitable alternative therapy that targets GBM specifically and has low cytotoxicity for healthy cells. We previously reported that transient receptor potential melastatin 7 (TRPM7) channels are aberrantly upregulated in GBM, and inhibition of TRPM7 reduced GBM cellular functions including proliferation, migration, and invasion. This suggests TRPM7 is a potential therapeutic target for GBM treatment. In this study, we investigated the effects of the TRPM7 inhibitor, carvacrol, on human GBM cell lines U87 and U251 in vivo. With the use of a flank xenograft GBM mouse model, we demonstrated that carvacrol significantly reduced the tumour size in both mice injected with U87 and U251 cells, decreased p-Akt protein level and increased p-GSK3ß protein levels. Therefore, these results suggest that carvacrol may have therapeutic potential for GBM treatment.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Canales Catiónicos TRPM , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular , Cimenos , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Ratones , Recurrencia Local de Neoplasia , Proteínas Serina-Treonina Quinasas , Canales Catiónicos TRPM/metabolismo , Temozolomida/farmacología , Temozolomida/uso terapéutico
3.
Cell Calcium ; 101: 102521, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34953296

RESUMEN

TRPM7 is a non-selective divalent cation channel with an alpha-kinase domain. Corresponding with its broad expression, TRPM7 has a role in a wide range of cell functions, including proliferation, migration, and survival. Growing evidence shows that TRPM7 is also aberrantly expressed in various cancers, including brain cancers. Because ion channels have widespread tissue distribution and result in extensive physiological consequences when dysfunctional, these proteins can be compelling drug targets. In fact, ion channels comprise the third-largest drug target type, following enzymes and receptors. Literature has shown that suppression of TRPM7 results in inhibition of migration, invasion, and proliferation in several human brain tumours. Therefore, TRPM7 presents a potential target for therapeutic brain tumour interventions. This article reviews current literature on TRPM7 as a potential drug target in the context of brain tumours and provides an overview of various selective and non-selective modulators of the channel relevant to pharmacology, oncology, and ion channel function.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Encefálicas , Canales Catiónicos TRPM , Neoplasias Encefálicas/tratamiento farmacológico , Humanos , Proteínas Serina-Treonina Quinasas , Canales Catiónicos TRPM/antagonistas & inhibidores
4.
Acta Pharmacol Sin ; 43(4): 759-770, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34108651

RESUMEN

Ion channels are ubiquitously expressed in almost all living cells, and are the third-largest category of drug targets, following enzymes and receptors. The transient receptor potential melastatin (TRPM) subfamily of ion channels are important to cell function and survival. Studies have shown upregulation of the TRPM family of ion channels in various brain tumours. Gliomas are the most prevalent form of primary malignant brain tumours with no effective treatment; thus, drug development is eagerly needed. TRPM2 is an essential ion channel for cell function and has important roles in oxidative stress and inflammation. In response to oxidative stress, ADP-ribose (ADPR) is produced, and in turn activates TRPM2 by binding to the NUDT9-H domain on the C-terminal. TRPM2 has been implicated in various cancers and is significantly upregulated in brain tumours. This article reviews the current understanding of TRPM2 in the context of brain tumours and overviews the effects of potential drug therapies targeting TRPM2 including hydrogen peroxide (H2O2), curcumin, docetaxel and selenium, paclitaxel and resveratrol, and botulinum toxin. It is long withstanding knowledge that gliomas are difficult to treat effectively, therefore investigating TRPM2 as a potential therapeutic target for brain tumours may be of considerable interest in the fields of ion channels and pharmacology.


Asunto(s)
Neoplasias Encefálicas , Canales Catiónicos TRPM , Adenosina Difosfato Ribosa/química , Adenosina Difosfato Ribosa/metabolismo , Adenosina Difosfato Ribosa/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Calcio/metabolismo , Humanos , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo , Canales Catiónicos TRPM/fisiología
5.
Cell Calcium ; 96: 102400, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33784560

RESUMEN

Cancer is the second leading cause of death worldwide and accounted for an estimated 9.6 million deaths, or 1 in 6 deaths, in 2018. Despite recent advances in cancer prevention, diagnosis, and treatment strategies, the burden of this disease continues to grow with each year, with dire physical, emotional, and economic consequences for all levels of society. Classic characteristics of cancer include rapid, uncontrolled cell proliferation and spread of cancerous cells to other parts of the body, a process known as metastasis. Transient receptor potential melastatin 7 (TRPM7), a Ca2+- and Mg2+-permeable nonselective divalent cation channel defined by the atypical presence of an α-kinase within its C-terminal domain, has been implicated, due to its modulation of Ca2+ and Mg2+ influx, in a wide variety of physiological and pathological processes, including cancer. TRPM7 is overexpressed in several cancer types and has been shown to variably increase cellular proliferation, migration, and invasion of tumour cells. However, the relative contribution of TRPM7 kinase domain activity to cancer as opposed to ion flux through its channel pore remains an area of active discovery. In this review, we describe the specific role of the TRPM7 kinase domain in cancer processes as well as mechanisms of regulation and inhibition of the kinase domain.


Asunto(s)
Neoplasias/enzimología , Neoplasias/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Canales Catiónicos TRPM/metabolismo , Animales , Movimiento Celular/fisiología , Activación Enzimática/fisiología , Humanos , Proteínas Serina-Treonina Quinasas/química , Canales Catiónicos TRPM/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...