Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(27): e2312337121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38923987

RESUMEN

Sodium-ion batteries (SIBs) as one of the promising alternatives to lithium-ion batteries have achieved remarkable progress in the past. However, the all-climate performance is still very challenging for SIBs. Herein, 15-Crown-5 (15-C-5) is screened as an electrolyte additive from a number of ether molecules theoretically. The good sodiophilicity, high molecule rigidity, and bulky size enable it to reshape the solvation sheath and promote the anion engagement in the solvated structures by molecule crowding. This change also enhances Na-ion transfer, inhibits side reactions, and leads to a thin and robust solid-electrolyte interphase. Furthermore, the electrochemical stability and operating temperature windows of the electrolyte are extended. These profits improve the electrochemical performance of SIBs in all climates, much better than the case without 15-C-5. This improvement is also adopted to µ-Sn, µ-Bi, hard carbon, and MoS2. This work opens a door to prioritize the potential molecules in theory for advanced electrolytes.

2.
Int J Biol Macromol ; 271(Pt 2): 132507, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38768920

RESUMEN

This study employed an anionic heteropolysaccharide extracted from overgrown Enteromorpha and homopolysaccharide pullulan to fabricate a self-floating hydrogel by introducing bubble templates. Subsequently, green in-situ reduction and immobilization of silver nanoparticles (Ag NPs) in the hydrogel were successfully achieved without additional reducing agents. The heteropolysaccharide from Enteromorpha provides carboxyl and sulfate groups for Ag+ ions complexation, which is beneficial for the in-situ reduction of Ag NPs and inhibits their aggregation. The incorporation of bubble templates facilitates the creation of a hierarchical pore structure in the hydrogel, giving it self-floating properties for easy recycling, while the hierarchical network with rich anchor sites ensuring adequate traction for Ag NPs dispersion and stabilization. By adjusting polysaccharide content and using bubble templates, Ag NPs smaller than 10 nm can be obtained. The composite hydrogel exhibits tunable catalytic activity and excellent degradation towards Rhodamine B, Methyl Orange, and 4-Nitrophenol, with the normalized rate constant (knor) of 78.89, 59.08, and 30.42 min-1 g-1, respectively. Notably, the reduction efficiency remained above 98 % after 6 recycles with little leaching of Ag NPs, benefiting from its self-floating ability for easy recovery in practical applications.


Asunto(s)
Tecnología Química Verde , Hidrogeles , Nanopartículas del Metal , Polisacáridos , Plata , Hidrogeles/química , Catálisis , Plata/química , Polisacáridos/química , Nanopartículas del Metal/química , Contaminantes Químicos del Agua/química , Nitrofenoles/química , Rodaminas/química , Oxidación-Reducción , Compuestos Azo/química
3.
Molecules ; 29(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38675635

RESUMEN

In many practical applications involving surfactants, achieving defoaming without affecting interfacial activity is a challenge. In this study, the antifoaming performance of REP-type block polymer nonionic surfactant C12EOmPOn was determined, and molecular dynamics simulation method was employed to investigate the molecular behaviors of surfactants at a gas/water interface, the detailed arrangement information of the different structural segments of the surfactant molecules and the inter-/intra-interactions between all the structural motifs in the interfacial layer were analyzed systematically, by which the antifoaming mechanisms of the surfactants were revealed. The results show that the EO and PO groups of REP-type polyether molecules are located in the aqueous phase near the interface, and the hydrophobic tails distribute separately, lying almost flat on the gas/water interface. The interaction between the same groups of EOs and POs is significantly stronger than with water. REP block polyethers with high polymerization degrees of EO and PO are more inclined to overlap into dense layers, resulting in the formation of aggregates resembling "oil lenses" spreading on the gas/water interface, which exerts a stronger antifoaming effect. This study provides a smart approach to obtaining efficient antifoaming performance at room temperature without adding other antifoam ingredients.

4.
Nat Commun ; 14(1): 3526, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37316539

RESUMEN

The dendrite growth of zinc and the side reactions including hydrogen evolution often degrade performances of zinc-based batteries. These issues are closely related to the desolvation process of hydrated zinc ions. Here we show that the efficient regulation on the solvation structure and chemical properties of hydrated zinc ions can be achieved by adjusting the coordination micro-environment with zinc phenolsulfonate and tetrabutylammonium 4-toluenesulfonate as a family of electrolytes. The theoretical understanding and in-situ spectroscopy analysis revealed that the favorable coordination of conjugated anions involved in hydrogn bond network minimizes the activate water molecules of hydrated zinc ion, thus improving the zinc/electrolyte interface stability to suppress the dendrite growth and side reactions. With the reversibly cycling of zinc electrode over 2000 h with a low overpotential of 17.7 mV, the full battery with polyaniline cathode demonstrated the impressive cycling stability for 10000 cycles. This work provides inspiring fundamental principles to design advanced electrolytes under the dual contributions of solvation modulation and interface regulation for high-performing zinc-based batteries and others.

5.
Angew Chem Int Ed Engl ; 62(14): e202214258, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36451256

RESUMEN

The applications of alloy-type anode materials for Na-ion batteries are always obstructed by enormous volume variation upon cycles. Here, K+ ions are introduced as an electrolyte additive to improve the electrochemical performance via electrostatic shielding, using Sn microparticles (µ-Sn) as a model. Theoretical calculations and experimental results indicate that K+ ions are not incorporated in the electrode, but accumulate on some sites. This accumulation slows down the local sodiation at the "hot spots", promotes the uniform sodiation and enhances the electrode stability. Therefore, the electrode maintains a high specific capacity of 565 mAh g-1 after 3000 cycles at 2 A g-1 , much better than the case without K+ . The electrode also remains an areal capacity of ≈3.5 mAh cm-2 after 100 cycles. This method does not involve time-consuming preparation, sophisticated instruments and expensive reagents, exhibiting the promising potential for other anode materials.

6.
ACS Omega ; 7(45): 41189-41200, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36406577

RESUMEN

Understanding the adsorption state and molecular behavior of the diverse components of shale oil in shale slits is of critical importance for exploring novel enhanced shale oil recovery techniques, but it is hard to be achieved by experimental measurements. In this paper, molecular dynamics (MD) simulations are performed to quantitatively describe the microbehavior of shale oil mixtures containing different kinds of hydrocarbon components, including asphaltene, in quartz slits. The spatial distributions of all the presenting components are given, the interaction energy between the components and quartz is analyzed, and the diffusion coefficients of all the components are calculated. It was found that asphaltene molecules play a vitally important role in restricting the detachment and diffusion movement of all hydrocarbon components, which is actually a key problem limiting the recovery efficiency of shale oil. The effects of temperature, slit aperture, and the appearance of CO2 on the adsorption behavior of the different shale oil components are examined; the results suggest that the light and medium components are the fractions with the most potential in thermal exploitation, while injection of CO2 is beneficial for the extraction of all the components, especially the medium components. This work gives insights into the effect of asphaltene on shale oil recovery in quartz slits and might provide guidance on the utilization of thermal and CO2-enhanced enhanced oil recovery (EOR) techniques in shale oil production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...