Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Small ; 20(5): e2305091, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37681505

RESUMEN

Animals with robust attachment abilities commonly exhibit stable attachment and convenient detachment. However, achieving an efficient attachment-detachment function in bioinspired adhesives is challenging owing to the complexity and delay of actuators. In this study, a class of multilayer adhesives (MAs) comprising backing, middle, and bottom layers is proposed to realize rapid switching by only adjusting the preload. At low preload, the MAs maintain intimate contact with the substrate. By contrast, a sufficiently large preload results in significant deformation of the middle layer, causing underside buckling and reducing adhesion. By optimizing the structural parameters of the MAs, a high switching ratio (up to 136×) can be achieved under different preloads. Furthermore, the design of the MAs incorporates a film-terminated structure, which prevents the embedding of dirt particles, simplifies cleaning, and maintains the separation and uprightness of the microstructures. Consequently, the MAs demonstrate practical potential for simple and efficient transportation applications, as they achieve switchable adhesion through their structure, exhibiting a high switching ratio and fast switching.

2.
Cyborg Bionic Syst ; 4: 0008, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37040511

RESUMEN

Climbing behavior is a superior motion skill that animals have evolved to obtain a more beneficial position in complex natural environments. Compared to animals, current bionic climbing robots are less agile, stable, and energy-efficient. Further, they locomote at a low speed and have poor adaptation to the substrate. One of the key elements that can improve their locomotion efficiency is the active and flexible feet or toes observed in climbing animals. Inspired by the active attachment-detachment behavior of geckos, a hybrid pneumatic-electric-driven climbing robot with active attachment-detachment bionic flexible feet (toes) was developed. Although the introduction of bionic flexible toes can effectively improve the robot's adaptability to the environment, it also poses control challenges, specifically, the realization of attachment-detachment behavior by the mechanics of the feet, the realization of hybrid drive control with different response characteristics, and the interlimb collaboration and limb-foot coordination with a hysteresis effect. Through the analysis of geckos' limbs and foot kinematic behavior during climbing, rhythmic attachment-detachment strategies and coordination behavior between toes and limbs at different inclines were identified. To enable the robot to achieve similar foot attachment-detachment behavior for climbing ability enhancement, we propose a modular neural control framework comprising a central pattern generator module, a post-processing central pattern generation module, a hysteresis delay line module, and an actuator signal conditioning module. Among them, the hysteresis adaptation module helps the bionic flexible toes to achieve variable phase relationships with the motorized joint, thus enabling proper limb-to-foot coordination and interlimb collaboration. The experiments demonstrated that the robot with neural control achieved proper coordination, resulting in a foot with a 285% larger adhesion area than that of a conventional algorithm. In addition, in the plane/arc climbing scenario, the robot with coordination behavior increased by as much as 150%, compared to the incoordinated one owing to its higher adhesion reliability.

3.
ACS Appl Mater Interfaces ; 14(43): 48438-48448, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36259961

RESUMEN

Wearable bioelectrical monitoring devices can provide long-term human health information such as electrocardiogram and other physiological signals. It is a crucial part of the remote medical system. These can provide prediction for the diagnosis and treatment of cardiovascular disease and access to timely treatment. However, the patch comfort of the wearable monitoring devices in long-term contact with the skin have been a technical bottleneck of the hardware. In this study, the biomimetic patch with wicking-breathable and multi-mechanism adhesion performance to achieve adaptability and comfortability to human skin has been reported. The patch was designed based on a conical through-hole and hexagonal microgroove to directionally transport sweat from skin to air which gives the patch the breathable performance. The breathable and drainage capability of the biomimetic patch was experimentally verified by analyzing the conical through-hole and hexagonal microgroove with the structural mechanism of wicking. Multi-mechanism adhesion of the Ag/Ni microneedle array and PDMS-t adhesion material ensures the stability of patch signal acquisition. This study provides a new way for enhancing the breathability and adaptability of the patch to realize accurate bioelectrical signal monitoring under sweat conditions on human skin.


Asunto(s)
Biomimética , Dispositivos Electrónicos Vestibles , Humanos , Acción Capilar , Sudor/química , Piel
4.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 39(4): 767-775, 2022 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-36008341

RESUMEN

As the most efficient perception system in nature, the perception mechanism of the insect (such as honeybee) antennae is the key to imitating the high-performance sensor technology. An automated experimental device suitable for collecting electrical signals (including antenna reaction time information) of antennae was developed, in response to the problems of the non-standardized experimental process, interference of manual operation, and low efficiency in the study of antenna perception mechanism. Firstly, aiming at the automatic identification and location of insect heads in experiments, the image templates of insect head contour features were established. Insect heads were template-matched based on the Hausdorff method. Then, for the angle deviation of the insect heads relative to the standard detection position, a method that calculates the angle of the insect head mid-axis based on the minimum external rectangle of the long axis was proposed. Eventually, the electrical signals generated by the antennae in contact with the reagents were collected by the electrical signal acquisition device. Honeybees were used as the research object in this study. The experimental results showed that the accuracy of template matching could reach 95.3% to locate the bee head quickly, and the deviation angle of the bee head was less than 1°. The distance between antennae and experimental reagents could meet the requirements of antennae perception experiments. The parameters, such as the contact reaction time of honeybee antennae to sucrose solution, were consistent with the results of the manual experiment. The system collects effectively antenna contact signals in an undisturbed state and realizes the standardization of experiments on antenna perception mechanisms, which provides an experimental method and device for studying and analyzing the reaction time of the antenna involved in biological antenna perception mechanisms.


Asunto(s)
Antenas de Artrópodos , Animales , Abejas
5.
Colloids Surf B Biointerfaces ; 212: 112335, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35078054

RESUMEN

Biologically inspired adhesives microstructure requires enough flexibility to make a conformal attachment to the surface as well as high rigidity to maintain the mechanical stability of structure against buckling. To tackle these conflicting factors for the synthetic adhesives is a challenge towards large-scale production and utilizing in practical applications. Addressing this problem, we have fabricated a honeycomb structure with a soft elastic film, partially covering the cavity of the honeycomb pattern. Honeycomb structure provides enough support to maintain the structural stability of the microstructure and soft PDMS film over the pattern provides sufficient flexibility to form a strong attachment with the target surface. Meanwhile, the resemblance of the designed structure to the octopi's sucker generates a negative pressure resulting in suction forces. To justify this suction effect, we compared our results with other controlled honeycomb microstructures (1) without any elastic film (2) with elastic film covering the whole cavity of the honeycomb pattern. Experimental results and theoretical prediction demonstrate the synergistic role of van der Waals and suction forces in the proposed partial-film honeycomb microstructure. The synergistic role of adhesive forces makes this structure a stronger, durable, and surface adaptable adhesive. We also investigated the critical role of the viscous forces for our proposed microstructure in water and silicon oil wetting conditions which signify the contribution of capillary forces.


Asunto(s)
Adhesivos , Agua , Adhesivos/química , Agua/química , Humectabilidad
6.
Nanotechnology ; 31(34): 345701, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32369783

RESUMEN

Vertical aligned carbon nanotube (VACNT) arrays used as dry adhesive materials have broad prospects in the applied fields of space, medicine and electronics. The adhesion of VACNT arrays is believed to be related not only to the nano-array structure and a clean surface, but also to chemical composition. Here, radio-frequency (RF) carbon dioxide (CO2) plasma treatment is introduced as an effective method for purifying and functionalizing the surface to improve the dry adhesive performance of VACNT arrays. Scanning electron microscopy showed that the VACNT arrays retained the alignment architecture with minimal damage at low power. X-ray photoelectron spectroscopy and contact angle tests revealed that the content of non-polar components (C = C bonds) decreased after treatment, while the content of polar groups (C = O and O-C = O bonds) increased, which changed the surface polarity of the VACNT arrays. Raman analyses and transmission electron microscopy demonstrated that amorphous carbon can be selectively removed with increasing time (0-18 min), but was continuously generated with increasing power (30-90 W). The best adhesive strength of 18 N cm-2 (increased by 39%) was obtained after CO2 plasma treating for 10 min at 30 W power, which was attributed to the combined action of purification and polarization.

7.
ACS Appl Mater Interfaces ; 8(15): 10005-13, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-27065476

RESUMEN

The collection of water from fog is a simple and sustainable means of obtaining freshwater for human and animal consumption. Herein, we address the use of metal foam in fog collection and present a novel fog-collecting device fabricated from copper foam. This device, which can also be used in other liquid-gas separation applications, is a 3D extension of biologically inspired 1D and 2D materials. The network structure of the 3D material effectively increased the contact area and interaction time of the skeleton structure and fog compared to those of traditional 2D fog-collecting materials. The main aspects investigated in this study were the influences of the inertial centrifugal force generated by rotating the metal-foam samples and the use of samples with different surface wettabilities on the fog-collecting performance. Superhydrophilic and superhydrophobic samples were found to have higher collection efficiencies at low and high rotational speeds, respectively, and a maximum efficiency of 86% was achieved for superhydrophobic copper foam (20 pores per inch) rotated at 1500 rpm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA