Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 47(12): 6369-6385, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31114902

RESUMEN

Transfer RNAs (tRNAs) are divided into two types, type I with a short variable loop and type II with a long variable loop. Aminoacylation of type I or type II tRNALeu is catalyzed by their cognate leucyl-tRNA synthetases (LeuRSs). However, in Streptomyces coelicolor, there are two types of tRNALeu and only one LeuRS (ScoLeuRS). We found that the enzyme could leucylate both types of ScotRNALeu, and had a higher catalytic efficiency for type II ScotRNALeu(UAA) than for type I ScotRNALeu(CAA). The results from tRNA and enzyme mutagenesis showed that ScoLeuRS did not interact with the canonical discriminator A73. The number of nucleotides, rather than the type of base of the variable loop in the two types of ScotRNALeus, was determined as important for aminoacylation. In vitro and in vivo assays showed that the tertiary structure formed by the D-loop and TψC-loop is more important for ScotRNALeu(UAA). We showed that the leucine-specific domain (LSD) of ScoLeuRS could help LeuRS, which originally only leucylates type II tRNALeu, to aminoacylate type I ScotRNALeu(CAA) and identified the crucial amino acid residues at the C-terminus of the LSD to recognize type I ScotRNALeu(CAA). Overall, our findings identified a rare recognition mechanism of LeuRS to tRNALeu.


Asunto(s)
Leucina-ARNt Ligasa/metabolismo , ARN de Transferencia de Leucina/metabolismo , Streptomyces coelicolor/enzimología , Aminoacilación de ARN de Transferencia , Leucina-ARNt Ligasa/química , ARN Mitocondrial/metabolismo , ARN de Transferencia de Leucina/química , Streptomyces coelicolor/genética
2.
Nucleic Acids Res ; 46(9): 4662-4676, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29648639

RESUMEN

Six pathogenic mutations have been reported in human mitochondrial tRNAThr (hmtRNAThr); however, the pathogenic molecular mechanism remains unclear. Previously, we established an activity assay system for human mitochondrial threonyl-tRNA synthetase (hmThrRS). In the present study, we surveyed the structural and enzymatic effects of pathogenic mutations in hmtRNAThr and then focused on m.15915 G > A (G30A) and m.15923A > G (A38G). The harmful evolutionary gain of non-Watson-Crick base pair A29/C41 caused hmtRNAThr to be highly susceptible to mutations disrupting the G30-C40 base pair in various ways; for example, structural integrity maintenance, modification and aminoacylation of tRNAThr, and editing mischarged tRNAThr. A similar phenomenon was observed for hmtRNATrp with an A29/C41 non-Watson-Crick base pair, but not in bovine mtRNAThr with a natural G29-C41 base pair. The A38G mutation caused a severe reduction in Thr-acceptance and editing of hmThrRS. Importantly, A38 is a nucleotide determinant for the t6A modification at A37, which is essential for the coding properties of hmtRNAThr. In summary, our results revealed the crucial role of the G30-C40 base pair in maintaining the proper structure and function of hmtRNAThr because of A29/C41 non-Watson-Crick base pair and explained the molecular outcome of pathogenic G30A and A38G mutations.


Asunto(s)
Mutación , ARN Mitocondrial/química , ARN de Transferencia de Treonina/química , Anticodón , Emparejamiento Base , Humanos , Mitocondrias/enzimología , Edición de ARN , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , ARN de Transferencia de Treonina/genética , ARN de Transferencia de Treonina/metabolismo , Treonina-ARNt Ligasa/metabolismo , Aminoacilación de ARN de Transferencia
3.
Nucleic Acids Res ; 45(12): 7367-7381, 2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28575390

RESUMEN

The editing function of aminoacyl-tRNA synthetases (aaRSs) is indispensible for formation of the correct aminoacyl-tRNAs. Editing deficiency may lead to growth inhibition and the pathogenesis of various diseases. Herein, we confirmed that norvaline (Nva) but not isoleucine or valine is the major threat to the editing function of Saccharomyces cerevisiae leucyl-tRNA synthetase (ScLeuRS), both in vitro and in vivo. Nva could be misincorporated into the proteome of the LeuRS editing-deficient yeast strain (D419A/ScΔleuS), potentially resulting in dysfunctional protein folding and growth delay. Furthermore, the exploration of the Nva-induced intracellular stress response mechanism in D419A/ScΔleuS revealed that Hsp70 chaperones were markedly upregulated in response to the potential protein misfolding. Additionally, proline (Pro), glutamate (Glu) and glutamine (Gln), which may accumulate due to the conversion of Nva, collectively contributed to the reduction of reactive oxygen species (ROS) levels in Nva-treated D419A/ScΔleuS cells. In conclusion, our study highlights the significance of the editing function of LeuRS and provides clues for understanding the intracellular stress protective mechanisms that are triggered in aaRS editing-deficient organisms.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Leucina-ARNt Ligasa/genética , Edición de ARN , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de los fármacos , Valina/análogos & derivados , Ácido Glutámico/metabolismo , Ácido Glutámico/farmacología , Glutamina/metabolismo , Glutamina/farmacología , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Isoleucina/metabolismo , Isoleucina/farmacología , Cinética , Leucina-ARNt Ligasa/metabolismo , Prolina/metabolismo , Prolina/farmacología , Pliegue de Proteína , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Valina/metabolismo , Valina/farmacología
4.
J Biol Chem ; 292(25): 10709-10722, 2017 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-28455447

RESUMEN

Previous proteomic analyses have shown that aminoacyl-tRNA synthetases in many organisms can be modified by acetylation of Lys. In this present study, leucyl-tRNA synthetase and arginyl-tRNA synthetase from Escherichia coli (EcLeuRS and EcArgRS) were overexpressed and purified and found to be acetylated on Lys residues by MS. Gln scanning mutagenesis revealed that Lys619, Lys624, and Lys809 in EcLeuRS and Lys126 and Lys408 in EcArgRS might play important roles in enzyme activity. Furthermore, we utilized a novel protein expression system to obtain enzymes harboring acetylated Lys at specific sites and investigated their catalytic activity. Acetylation of these Lys residues could affect their aminoacylation activity by influencing amino acid activation and/or the affinity for tRNA. In vitro assays showed that acetyl-phosphate nonenzymatically acetylates EcLeuRS and EcArgRS and suggested that the sirtuin class deacetylase CobB might regulate acetylation of these two enzymes. These findings imply a potential regulatory role for Lys acetylation in controlling the activity of aminoacyl-tRNA synthetases and thus protein synthesis.


Asunto(s)
Arginino-ARNt Ligasa/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Leucina-ARNt Ligasa/química , Sirtuinas/química , Acetilación , Arginino-ARNt Ligasa/genética , Arginino-ARNt Ligasa/metabolismo , Activación Enzimática , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Leucina-ARNt Ligasa/genética , Leucina-ARNt Ligasa/metabolismo , Lisina/química , Lisina/genética , Lisina/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismo
5.
J Biol Chem ; 291(7): 3613-25, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26677220

RESUMEN

Leucyl-tRNA synthetase (LeuRS) is a multidomain enzyme that catalyzes Leu-tRNA(Leu) formation and is classified into bacterial and archaeal/eukaryotic types with significant diversity in the C-terminal domain (CTD). CTDs of both bacterial and archaeal LeuRSs have been reported to recognize tRNA(Leu) through different modes of interaction. In the human pathogen Candida albicans, the cytoplasmic LeuRS (CaLeuRS) is distinguished by its capacity to recognize a uniquely evolved chimeric tRNA(Ser) (CatRNA(Ser)(CAG)) in addition to its cognate CatRNA(Leu), leading to CUG codon reassignment. Our previous study showed that eukaryotic but not archaeal LeuRSs recognize this peculiar tRNA(Ser), suggesting the significance of their highly divergent CTDs in tRNA(Ser) recognition. The results of this study provided the first evidence of the indispensable function of the CTD of eukaryotic LeuRS in recognizing non-cognate CatRNA(Ser) and cognate CatRNA(Leu). Three lysine residues were identified as involved in mediating enzyme-tRNA interaction in the leucylation process: mutation of all three sites totally ablated the leucylation activity. The importance of the three lysine residues was further verified by gel mobility shift assays and complementation of a yeast leuS gene knock-out strain.


Asunto(s)
Candida albicans/enzimología , Proteínas Fúngicas/metabolismo , Leucina-ARNt Ligasa/metabolismo , Modelos Moleculares , ARN de Hongos/metabolismo , ARN de Transferencia de Leucina/metabolismo , ARN de Transferencia de Serina/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , Candida albicans/metabolismo , Secuencia Conservada , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Técnicas de Inactivación de Genes , Leucina-ARNt Ligasa/química , Leucina-ARNt Ligasa/genética , Lisina/química , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Conformación de Ácido Nucleico , Filogenia , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , ARN de Hongos/química , ARN de Transferencia de Leucina/química , ARN de Transferencia de Serina/química , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Especificidad por Sustrato
6.
J Biol Chem ; 290(40): 24391-402, 2015 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-26272616

RESUMEN

The connective polypeptide 1 (CP1) editing domain of leucyl-tRNA synthetase (LeuRS) from various species either harbors a conserved active site to exclude tRNA mis-charging with noncognate amino acids or is evolutionarily truncated or lost because there is no requirement for high translational fidelity. However, human mitochondrial LeuRS (hmtLeuRS) contains a full-length but degenerate CP1 domain that has mutations in some residues important for post-transfer editing. The significance of such an inactive CP1 domain and a translational accuracy mechanism with different noncognate amino acids are not completely understood. Here, we identified the essential role of the evolutionarily divergent CP1 domain in facilitating hmtLeuRS's catalytic efficiency and endowing enzyme with resistance to AN2690, a broad-spectrum drug acting on LeuRSs. In addition, the canonical core of hmtLeuRS is not stringent for noncognate norvaline (Nva) and valine (Val). hmtLeuRS has a very weak tRNA-independent pre-transfer editing activity for Nva, which is insufficient to remove mis-activated Nva. Moreover, hmtLeuRS chimeras fused with a functional CP1 domain from LeuRSs of other species, regardless of origin, showed restored post-transfer editing activity and acquired fidelity during aminoacylation. This work offers a novel perspective on the role of the CP1 domain in optimizing aminoacylation efficiency.


Asunto(s)
Aminoacil-ARNt Sintetasas/química , Leucina-ARNt Ligasa/química , Secuencia de Aminoácidos , Aminoácidos/química , Aminoacil-ARNt Sintetasas/fisiología , Aminoacilación , Dominio Catalítico , Dicroismo Circular , Humanos , Hidrólisis , Leucina-ARNt Ligasa/fisiología , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Edición de ARN , Homología de Secuencia de Aminoácido , Valina/análogos & derivados , Valina/química
7.
J Biol Chem ; 289(30): 20953-9, 2014 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-24898251

RESUMEN

There are two isoforms of cytoplasmic arginyl-tRNA synthetase (hcArgRS) in human cells. The long form is a component of the multiple aminoacyl-tRNA synthetase complex, and the other is an N-terminal truncated form (NhcArgRS), free in the cytoplasm. It has been shown that the two forms of ArgRS arise from alternative translational initiation in a single mRNA. The short form is produced from the initiation at a downstream, in-frame AUG start codon. Interestingly, our data suggest that the alternative translational initiation of hcArgRS mRNA also takes place in Escherichia coli transformants. When the gene encoding full-length hcArgRS was overexpressed in E. coli, two forms of hcArgRS were observed. The N-terminal sequencing experiment identified that the short form was identical to the NhcArgRS in human cytoplasm. By constructing a bicistronic system, our data support that the mRNA encoding the N-terminal extension of hcArgRS has the capacity of independently recruiting E. coli ribosomes. Furthermore, two critical elements for recruiting prokaryotic ribosomes were identified, the "AGGA" core of the Shine-Dalgarno sequence and the "A-rich" sequence located just proximal to the alternative in-frame initiation site. Although the mechanisms of prokaryotic and eukaryotic translational initiation are distinct, they share some common features. The ability of the hcArgRS mRNA to recruit the prokaryotic ribosome may provide clues for shedding light on the mechanism of alternative translational initiation of hcArgRS mRNA in eukaryotic cells.


Asunto(s)
Arginino-ARNt Ligasa/metabolismo , Escherichia coli/metabolismo , Expresión Génica , Iniciación de la Cadena Peptídica Traduccional , Ribosomas/metabolismo , Arginino-ARNt Ligasa/genética , Escherichia coli/genética , Humanos , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...