Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Immunother Cancer ; 12(3)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38471713

RESUMEN

BACKGROUND: Recombinant human interleukin (rhIL)-7-hyFc (efineptakin alfa; NT-I7) is a potent T-cell amplifier, with two IL-7 molecules fused to IgD/IgG4 elements. rhIL-7-hyFc promotes extensive infiltration of CD8+ T cells into the tumor, concurrently increasing the numbers of intratumoral PD-1+CD8+ T cells. The hIL-2/TCB2 complex (SLC-3010) inhibits tumor growth by preferential activation of CD122 (IL-2Rß)high CD8+ T cells and natural killer cells, over regulatory T cells (Tregs). We investigated the underlying mechanisms of rhIL-7-hyFc and hIL-2/TCB2c antitumor activity and the potential synergistic efficacy, specifically focusing on tumor-specific CD8+ cells within the tumor and the tumor-draining lymph nodes (tdLN). METHODS: MC38 and CT26 tumor-bearing mice were administered with 10 mg/kg rhIL-7-hyFc intramuscularly and 0.9 mg/kg hIL-2/TCB2c intravenously. Anti-PD-1 monoclonal antibody was administered intraperitoneally three times at 3-day intervals at a dose of 5 mg/kg. Tumor volume was measured to assess efficacy. To compare the composition of immune cells between each monotherapy and the combination therapy, we analyzed tumors and tdLNs by flow cytometry. RESULTS: Our data demonstrate that the combination of rhIL-7-hyFc and hIL-2/TCB2c increases efficacy and generates an immune-stimulatory tumor microenvironment (TME). The TME is characterized by an increased infiltration of tumor-specific CD8+ T cells, and a decreased frequency of CD39highTIM-3+ Treg cells. Most importantly, rhIL-7-hyFc increases infiltration of a CD62L+Ly108+ early progenitor population of exhausted CD8+ T cells (TPEX), which may retain long-term proliferation capacity and replenish functional effector CD8+ T cells. hIL-2/TCB2c induces differentiation of CD62L+Ly108+ TPEX rapidly into CD101+ terminally differentiated subsets (terminally exhausted T cell (TEX term)). Our study also demonstrates that rhIL-7-hyFc significantly enhances the proliferation rate of TPEX in the tdLNs, positively correlating with their abundance within the tumor. Moreover, rhIL-7-hyFc and hIL-2/TCB2c can overcome the limited therapeutic effectiveness of PD-1 blockade, culminating in the complete regression of tumors. CONCLUSIONS: rhIL-7-hyFc can expand and maintain the progenitor pool of exhausted CD8+ T cells, whereas hIL-2/TCB2c promotes their differentiation into TEX term. Together, this induces an immune-stimulatory TME that improves the efficacy of checkpoint blockade.


Asunto(s)
Linfocitos T CD8-positivos , Interleucina-7 , Neoplasias , Proteínas Recombinantes de Fusión , Humanos , Animales , Ratones , Microambiente Tumoral , Receptor de Muerte Celular Programada 1 , Factores Inmunológicos
5.
Exp Mol Med ; 53(9): 1423-1436, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34584195

RESUMEN

Stem cell-based therapies with clinical applications require millions of cells. Therefore, repeated subculture is essential for cellular expansion, which is often complicated by replicative senescence. Cellular senescence contributes to reduced stem cell regenerative potential as it inhibits stem cell proliferation and differentiation as well as the activation of the senescence-associated secretory phenotype (SASP). In this study, we employed MHY-1685, a novel mammalian target of rapamycin (mTOR) inhibitor, and examined its long-term priming effect on the activities of senile human cardiac stem cells (hCSCs) and the functional benefits of primed hCSCs after transplantation. In vitro experiments showed that the MHY-1685‒primed hCSCs exhibited higher viability in response to oxidative stress and an enhanced proliferation potential compared to that of the unprimed senile hCSCs. Interestingly, priming MHY-1685 enhanced the expression of stemness-related markers in senile hCSCs and provided the differentiation potential of hCSCs into vascular lineages. In vivo experiment with echocardiography showed that transplantation of MHY-1685‒primed hCSCs improved cardiac function than that of the unprimed senile hCSCs at 4 weeks post-MI. In addition, hearts transplanted with MHY-1685-primed hCSCs exhibited significantly lower cardiac fibrosis and higher capillary density than that of the unprimed senile hCSCs. In confocal fluorescence imaging, MHY-1685‒primed hCSCs survived for longer durations than that of the unprimed senile hCSCs and had a higher potential to differentiate into endothelial cells (ECs) within the infarcted hearts. These findings suggest that MHY-1685 can rejuvenate senile hCSCs by modulating autophagy and that as a senescence inhibitor, MHY-1685 can provide opportunities to improve hCSC-based myocardial regeneration.


Asunto(s)
Autofagia , Diferenciación Celular , Mioblastos Cardíacos/citología , Mioblastos Cardíacos/metabolismo , Regeneración , Células Madre/citología , Células Madre/metabolismo , Autofagia/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Fibrosis , Humanos , Masculino , Miocardio/metabolismo , Miocardio/patología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Trasplante de Células Madre , Serina-Treonina Quinasas TOR/metabolismo
6.
Biofabrication ; 13(4)2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34433153

RESUMEN

Intercellular interaction is the most crucial factor in promoting cell viability and functionality in an engineered tissue system. Of the various shapes available for cell-laden constructs, spheroidal multicellular microarchitectures (SMMs) have been introduced as building blocks and injectable cell carriers with substantial cell-cell and cell-extracellular matrix (ECM) interactions. Here, we developed a precise and expeditious SMM printing method that can create a tissue-specific microenvironment and thus be potentially useful for cell therapy. This printing strategy is designed to manufacture SMMs fabricated with optimal bioink blended with decellularized ECM and alginate to enhance the functional performance of the encapsulated cells. Experimental results showed that the proposed method allowed for size controllability and mass production of SMMs with high cell viability. Moreover, SMMs co-cultured with endothelial cells promoted lineage-specific maturation and increased functionality compared to monocultured SMMs. Overall, it was concluded that SMMs have the potential for use in cell therapy due to their high cell retention and proliferation rate compared to single-cell injection, particularly for efficient tissue regeneration after myocardial infarction. This study suggests that utilizing microextrusion-based 3D bioprinting technology to encapsulate cells in cell-niche-standardized SMMs can expand the range of possible applications.


Asunto(s)
Bioimpresión , Tratamiento Basado en Trasplante de Células y Tejidos , Células Endoteliales , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido
7.
Korean J Physiol Pharmacol ; 25(5): 459-466, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34448463

RESUMEN

Cardiovascular disease (CVD) and its complications are the leading cause of morbidity and mortality in the world. Because of the side effects and incomplete recovery from current therapy, stem cell therapy emerges as a potential therapy for CVD treatment, and endothelial progenitor cell (EPC) is one of the key stem cells used for therapeutic applications. The effect of this therapy required the expansion of EPC function. To enhance the EPC activation, proliferation, and angiogenesis using dronedarone hydrochloride (DH) is the purpose of this study. DH received approval for atrial fibrillation treatment and its cardiovascular protective effects were already reported. In this study, DH significantly increased EPC proliferation, tube formation, migration, and maintained EPCs surface marker expression. In addition, DH treatment up-regulated the phosphorylation of AKT and reduced the reactive oxygen species production. In summary, the cell priming by DH considerably improved the functional activity of EPCs, and the use of which might be a novel strategy for CVD treatment.

8.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946516

RESUMEN

Endothelial progenitor cells (EPCs) are specialized cells in circulating blood, well known for their ability to form new vascular structures. Aging and various ailments such as diabetes, atherosclerosis and cardiovascular disease make EPCs vulnerable to decreasing in number, which affects their migration, proliferation and angiogenesis. Myocardial ischemia is also linked to a reduced number of EPCs and their endothelial functional role, which hinders proper blood circulation to the myocardium. The current study shows that an aminopyrimidine derivative compound (CHIR99021) induces the inhibition of GSK-3ß in cultured late EPCs. GSK-3ß inhibition subsequently inhibits mTOR by blocking the phosphorylation of TSC2 and lysosomal localization of mTOR. Furthermore, suppression of GSK-3ß activity considerably increased lysosomal activation and autophagy. The activation of lysosomes and autophagy by GSK-3ß inhibition not only prevented replicative senescence of the late EPCs but also directed their migration, proliferation and angiogenesis. To conclude, our results demonstrate that lysosome activation and autophagy play a crucial role in blocking the replicative senescence of EPCs and in increasing their endothelial function. Thus, the findings provide an insight towards the treatment of ischemia-associated cardiovascular diseases based on the role of late EPCs.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Células Progenitoras Endoteliales/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Pirimidinas/farmacología , Autofagia/efectos de los fármacos , Células Cultivadas , Células Progenitoras Endoteliales/citología , Células Progenitoras Endoteliales/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Serina-Treonina Quinasas TOR/metabolismo
9.
Exp Mol Med ; 52(4): 615-628, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32273566

RESUMEN

The mammalian target of rapamycin (mTOR) signaling pathway efficiently regulates the energy state of cells and maintains tissue homeostasis. Dysregulation of the mTOR pathway has been implicated in several human diseases. Rapamycin is a specific inhibitor of mTOR and pharmacological inhibition of mTOR with rapamycin promote cardiac cell generation from the differentiation of mouse and human embryonic stem cells. These studies strongly implicate a role of sustained mTOR activity in the differentiating functions of embryonic stem cells; however, they do not directly address the required effect for sustained mTOR activity in human cardiac progenitor cells. In the present study, we evaluated the effect of mTOR inhibition by rapamycin on the cellular function of human cardiac progenitor cells and discovered that treatment with rapamycin markedly attenuated replicative cell senescence in human cardiac progenitor cells (hCPCs) and promoted their cellular functions. Furthermore, rapamycin not only inhibited mTOR signaling but also influenced signaling pathways, including STAT3 and PIM1, in hCPCs. Therefore, these data reveal a crucial function for rapamycin in senescent hCPCs and provide clinical strategies based on chronic mTOR activity.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Mioblastos Cardíacos/efectos de los fármacos , Mioblastos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Biología Computacional/métodos , Perfilación de la Expresión Génica , Humanos , Sirolimus/farmacología , Células Madre/metabolismo
10.
Tissue Eng Regen Med ; 17(3): 323-333, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32227286

RESUMEN

BACKGROUND: Despite promising advances in stem cell-based therapy, the treatment of ischemic cardiovascular diseases remains a big challenge due to both the insufficient in vivo viability of transplanted cells and poor angiogenic potential of stem cells. The goal of this study was to develop therapeutic human cardiac progenitor cells (hCPCs) for ischemic cardiovascular diseases with a novel M13 peptide carrier. METHOD: In this study, an engineered M13 peptide carrier was successfully generated using a QuikChange Kit. The cellular function of M13 peptide carrier-treated hCPCs was assessed using a tube formation assay and scratch wound healing assay. The in vivo engraftment and cell survival bioactivities of transplanted cells were demonstrated by immunohistochemistry after hCPC transplantation into a myocardial infarction animal model. RESULTS: The engineered M13RGD+SDKP peptide carrier, which expressed RGD peptide on PIII site and SDKP peptide on PVIII site, did not affect morphologic change and proliferation ability in hCPCs. In contrast, hCPCs treated with M13RGD+SDKP showed enhanced angiogenic capacity, including tube formation and migration capacity. Moreover, transplanted hCPCs with M13RGD+SDKP were engrafted into the ischemic region and promoted in vivo cell survival. CONCLUSION: Our present data provides a promising protocol for CPC-based cell therapy via short-term cell priming of hCPCs with engineered M13RGD+SDKP before cell transplantation for treatment of cardiovascular disease.


Asunto(s)
Inductores de la Angiogénesis/farmacología , Infarto del Miocardio/terapia , Péptidos/metabolismo , Trasplante de Células Madre , Células Madre/efectos de los fármacos , Animales , Bacteriófago M13/genética , Enfermedades Cardiovasculares , Supervivencia Celular , Células Endoteliales , Ingeniería Genética , Humanos , Masculino , Ratones Endogámicos BALB C , Miocitos Cardíacos/trasplante , Péptidos/farmacología , Cicatrización de Heridas
11.
Mar Drugs ; 17(7)2019 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-31277207

RESUMEN

The purpose of the present study is to improve the endothelial progenitor cells (EPC) activation, proliferation, and angiogenesis using enzyme-aided extraction of fucoidan by amyloglucosidase (EAEF-AMG). Enzyme-aided extraction of fucoidan by AMG (EAEF-AMG) significantly increased EPC proliferation by reducing the reactive oxygen species (ROS) and decreasing apoptosis. Notably, EAEF-AMG treated EPCs repressed the colocalization of TSC2/LAMP1 and promoted perinuclear localization of mTOR/LAMP1 and mTOR/Rheb. Moreover, EAEF-AMG enhanced EPC functionalities, including tube formation, cell migration, and wound healing via regulation of AKT/Rheb signaling. Our data provided cell priming protocols to enhance therapeutic applications of EPCs using bioactive compounds for the treatment of CVD.


Asunto(s)
Células Progenitoras Endoteliales/efectos de los fármacos , Glucano 1,4-alfa-Glucosidasa/metabolismo , Polisacáridos/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Células Progenitoras Endoteliales/metabolismo , Humanos , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo , Cicatrización de Heridas/efectos de los fármacos
12.
Biochem Biophys Res Commun ; 515(4): 600-606, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31178140

RESUMEN

Colorectal cancer is one of the leading causes of cancer-related deaths. Due to relapse after current therapy regimens, cancer stem cells (CSCs) are being studied to target this small tumor-initiating population. Anterior gradient 2 (AGR2), a disulfide isomerase protein, is a well-known pro-oncogenic/metastatic oncogene overexpressed in various tumor tissues, including colon cancer. We found that AGR2 was a novel stem cell marker that was regulated by the canonical Wnt/ß-catenin pathway in colon CSCs. AGR2 was highly co-expressed with surface stem cell markers in spheroidal culture. Silencing of AGR2 resulted in decreased sphere-forming ability and down-regulated expression of stem cell markers, whereas the opposite effects were seen with AGR2 overexpression. Moreover, patients with high ß-catenin and AGR2 expression showed lower overall survival than those with low expression. In conclusion, our study describes a novel role for AGR2 as a stem cell marker that is highly regulated by canonical Wnt/ß-catenin signaling in colorectal cancer.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Regulación Neoplásica de la Expresión Génica , Mucoproteínas/metabolismo , Células Madre Neoplásicas/metabolismo , Proteínas Oncogénicas/metabolismo , Vía de Señalización Wnt , Línea Celular Tumoral , Perfilación de la Expresión Génica , Silenciador del Gen , Células HCT116 , Células HEK293 , Humanos , Metástasis de la Neoplasia , Transducción de Señal , Esferoides Celulares , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
13.
Biochem Biophys Res Commun ; 516(1): 149-156, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31202462

RESUMEN

Anterior gradient protein 2 homolog (AGR2) belongs to the disulfide isomerase family of endoplasmic reticulum proteins. Itis overexpressed in several types of solid tumors, including tumors of the prostate, lung, and pancreas. However, the role of AGR2 in breast cancer and the regulatory mechanisms underlying AGR2 protein expressionare not fullyunderstood. We demonstrated that AGR2 levels are increased under hypoxic conditions and in breast cancer tumors. Mechanistically, Twist1 binds to, and activates the AGR2 promoter via an E-box sequence. Under hypoxic conditions, the increased expression of ARG2 is attenuated when Twist1 levels are reduced by shRNA. Conversely, Twist1 overexpression fully reverses decreased AGR2 levels upon HIF-1α knockdown. Notably, AGR2 is required for Twist1-induced proliferation, migration, and invasion of breast cancer cells. Collectively, these findings extend our understanding of AGR2 regulation in breast cancer and may contribute to development of Twist1-AGR2 targeting therapeutics for breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica , Mucoproteínas/genética , Proteínas Nucleares/genética , Proteínas Oncogénicas/genética , Proteína 1 Relacionada con Twist/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Humanos , Persona de Mediana Edad , Regiones Promotoras Genéticas
14.
Mar Drugs ; 17(6)2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31234277

RESUMEN

Cardiac progenitor cells (CPCs) are resident stem cells present in a small portion of ischemic hearts and function in repairing the damaged heart tissue. Intense oxidative stress impairs cell metabolism thereby decreasing cell viability. Protecting CPCs from undergoing cellular apoptosis during oxidative stress is crucial in optimizing CPC-based therapy. Histochrome (sodium salt of echinochrome A-a common sea urchin pigment) is an antioxidant drug that has been clinically used as a pharmacologic agent for ischemia/reperfusion injury in Russia. However, the mechanistic effect of histochrome on CPCs has never been reported. We investigated the protective effect of histochrome pretreatment on human CPCs (hCPCs) against hydrogen peroxide (H2O2)-induced oxidative stress. Annexin V/7-aminoactinomycin D (7-AAD) assay revealed that histochrome-treated CPCs showed significant protective effects against H2O2-induced cell death. The anti-apoptotic proteins B-cell lymphoma 2 (Bcl-2) and Bcl-xL were significantly upregulated, whereas the pro-apoptotic proteins BCL2-associated X (Bax), H2O2-induced cleaved caspase-3, and the DNA damage marker, phosphorylated histone (γH2A.X) foci, were significantly downregulated upon histochrome treatment of hCPCs in vitro. Further, prolonged incubation with histochrome alleviated the replicative cellular senescence of hCPCs. In conclusion, we report the protective effect of histochrome against oxidative stress and present the use of a potent and bio-safe cell priming agent as a potential therapeutic strategy in patient-derived hCPCs to treat heart disease.


Asunto(s)
Miocitos Cardíacos/efectos de los fármacos , Naftoquinonas/farmacología , Estrés Oxidativo/efectos de los fármacos , Células Madre/efectos de los fármacos , Anexina A5/metabolismo , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Caspasa 3/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/farmacología , Miocitos Cardíacos/metabolismo , Daño por Reperfusión/inducido químicamente , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Federación de Rusia , Proteína X Asociada a bcl-2/metabolismo
15.
Stem Cells Int ; 2018: 7453161, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30510587

RESUMEN

Cross talks between the renin-angiotensin system (RAS), sympathetic nervous system, and vascular homeostasis are tightly coordinated in hypertension. Angiotensin II (Ang II), a key factor in RAS, when abnormally activated, affects the number and bioactivity of circulating human endothelial progenitor cells (hEPCs) in hypertensive patients. In this study, we investigated how the augmentation of Ang II regulates adrenergic receptor-mediated signaling and angiogenic bioactivities of hEPCs. Interestingly, the short-term treatment of hEPCs with Ang II drastically attenuated the expression of beta-2 adrenergic receptor (ADRB2), but did not alter the expression of beta-1 adrenergic receptor (ADRB1) and Ang II type 1 receptor (AT1R). EPC functional assay clearly demonstrated that the treatment with ADRB2 agonists significantly increased EPC bioactivities including cell proliferation, migration, and tube formation abilities. However, EPC bioactivities were decreased dramatically when treated with Ang II. Importantly, the attenuation of EPC bioactivities by Ang II was restored by treatment with an AT1R antagonist (telmisartan; TERT). We found that AT1R binds to ADRB2 in physiological conditions, but this binding is significantly decreased in the presence of Ang II. Furthermore, TERT, an Ang II-AT1R interaction blocker, restored the interaction between AT1R and ADRB2, suggesting that Ang II might induce the dysfunction of EPCs via downregulation of ADRB2, and an AT1R blocker could prevent Ang II-mediated ADRB2 depletion in EPCs. Taken together, our report provides novel insights into potential therapeutic approaches for hypertension-related cardiovascular diseases.

16.
Oxid Med Cell Longev ; 2018: 4528184, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30002788

RESUMEN

Diabetic cardiomyopathy (DCM) is tightly linked to heart disorders and dysfunction or death of the cardiomyocytes including resident cardiac progenitor cells (CPCs) in diabetic patients. In order to restore loss of function of resident or transplanted CPCs, much research has focused on novel therapeutic strategies including the discovery of novel function-modulating factors such as reactive oxygen species (ROS) scavengers. Here, we developed and defined a novel antioxidant, MHY-1684, for enhancing the angiogenic potential of CPCs against ROS-related DCM. Short-term treatment with MHY-1684 restored ROS-induced CPC cell death. Importantly, MHY-1684 decreased hyperglycemia-induced mitochondrial ROS generation and attenuated hyperglycemia-induced mitochondrial fragmentation. We observed that the activation process of both Drp1 (phosphorylation at the site of Ser616) and Fis-1 is drastically attenuated when exposed to high concentrations of D-glucose with MHY-1684. Interestingly, phosphorylation of Drp1 at the site of Ser637, which is an inhibitory signal for mitochondrial fusion, is restored by MHY-1684 treatment, suggesting that this antioxidant may affect the activation and inhibition of mitochondrial dynamics-related signaling and mitochondrial function in response to ROS stress. In conclusion, our finding of the novel compound, MHY-1684, as an ROS scavenger, might provide an effective therapeutic strategy for CPC-based therapy against diabetic cardiomyopathy.


Asunto(s)
Antioxidantes/farmacología , Hiperglucemia/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Células Madre/metabolismo , Western Blotting , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Dinaminas , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Ácido Peroxinitroso/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología , Células Madre/citología , Células Madre/efectos de los fármacos
17.
Mol Cells ; 41(6): 582-590, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29890822

RESUMEN

Endothelial progenitor cells (EPCs) and outgrowth endothelial cells (OECs) play a pivotal role in vascular regeneration in ischemic tissues; however, their therapeutic application in clinical settings is limited due to the low quality and quantity of patient-derived circulating EPCs. To solve this problem, we evaluated whether three priming small molecules (tauroursodeoxycholic acid, fucoidan, and oleuropein) could enhance the angiogenic potential of EPCs. Such enhancement would promote the cellular bioactivities and help to develop functionally improved EPC therapeutics for ischemic diseases by accelerating the priming effect of the defined physiological molecules. We found that preconditioning of each of the three small molecules significantly induced the differentiation potential of CD34+ stem cells into EPC lineage cells. Notably, long-term priming of OECs with the three chemical cocktail (OEC-3C) increased the proliferation potential of EPCs via ERK activation. The migration, invasion, and tube-forming capacities were also significantly enhanced in OEC-3Cs compared with unprimed OECs. Further, the cell survival ratio was dramatically increased in OEC-3Cs against H2O2-induced oxidative stress via the augmented expression of Bcl-2, a prosurvival protein. In conclusion, we identified three small molecules for enhancing the bioactivities of ex vivo-expanded OECs for vascular repair. Long-term 3C priming might be a promising methodology for EPC-based therapy against ischemic diseases.


Asunto(s)
Células Progenitoras Endoteliales/metabolismo , Diferenciación Celular , Proliferación Celular , Humanos
18.
Biochem Biophys Res Commun ; 499(3): 675-680, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29604275

RESUMEN

Mesenchymal stem cells (MSCs) are multipotent progenitor cells with self-renewing properties; thus, transplanting functionally enhanced MSCs might be a promising strategy for cell therapy against ischemic diseases. However, extensive oxidative damage in ischemic tissue affects the cell fate of transplanted MSCs, eventually resulting in cell damage and autophagic cell death. Oleuropein (OLP) is a bioactive compound isolated from olives and olive oil that harbors antioxidant properties. This study aimed to investigate the potential cytoprotective effects of OLP against oxidative stress and autophagic cell death in MSCs. We found that short-term priming with OLP attenuated H2O2-induced apoptosis by regulating the pro-apoptotic marker Bax and the anti-apoptotic markers Bcl-2 and Mcl-1. Notably, OLP inhibits H2O2 -induced autophagic cell death by modulating autophagy-related death signals, including mTOR (mammalian target of rapamycin), ULK1 (unc-51 like autophagy activating kinase 1), Beclin-1, AMPK (AMP-activated protein kinase), and LC3 (microtubule-associated protein 1a/1b-light chain 3). Our data suggest that OLP might reduce H2O2-induced autophagy and cell apoptosis in MSCs by regulating both the AMPK-ULK axis and the Bcl-2-Mcl-1 axis. Consequently, short-term cell priming with OLP might enhance the therapeutic effect of MSCs against ischemic vascular diseases, which provides an important potential improvement for emerging therapeutic strategies.


Asunto(s)
Tejido Adiposo/patología , Autofagia/efectos de los fármacos , Peróxido de Hidrógeno/toxicidad , Iridoides/farmacología , Células Madre Mesenquimatosas/patología , Proteínas Quinasas Activadas por AMP/metabolismo , Apoptosis/efectos de los fármacos , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Células Cultivadas , Citoprotección/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Glucósidos Iridoides , Iridoides/química , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Transducción de Señal/efectos de los fármacos
19.
Korean J Physiol Pharmacol ; 22(2): 203-213, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29520173

RESUMEN

Tumor undergo uncontrolled, excessive proliferation leads to hypoxic microenvironment. To fulfill their demand for nutrient, and oxygen, tumor angiogenesis is required. Endothelial progenitor cells (EPCs) have been known to the main source of angiogenesis because of their potential to differentiation into endothelial cells. Therefore, understanding the mechanism of EPC-mediated angiogenesis in hypoxia is critical for development of cancer therapy. Recently, mitochondrial dynamics has emerged as a critical mechanism for cellular function and differentiation under hypoxic conditions. However, the role of mitochondrial dynamics in hypoxia-induced angiogenesis remains to be elucidated. In this study, we demonstrated that hypoxia-induced mitochondrial fission accelerates EPCs bioactivities. We first investigated the effect of hypoxia on EPC-mediated angiogenesis. Cell migration, invasion, and tube formation was significantly increased under hypoxic conditions; expression of EPC surface markers was unchanged. And mitochondrial fission was induced by hypoxia time-dependent manner. We found that hypoxia-induced mitochondrial fission was triggered by dynamin-related protein Drp1, specifically, phosphorylated DRP1 at Ser637, a suppression marker for mitochondrial fission, was impaired in hypoxia time-dependent manner. To confirm the role of DRP1 in EPC-mediated angiogenesis, we analyzed cell bioactivities using Mdivi-1, a selective DRP1 inhibitor, and DRP1 siRNA. DRP1 silencing or Mdivi-1 treatment dramatically reduced cell migration, invasion, and tube formation in EPCs, but the expression of EPC surface markers was unchanged. In conclusion, we uncovered a novel role of mitochondrial fission in hypoxia-induced angiogenesis. Therefore, we suggest that specific modulation of DRP1-mediated mitochondrial dynamics may be a potential therapeutic strategy in EPC-mediated tumor angiogenesis.

20.
BMB Rep ; 51(2): 92-97, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29335071

RESUMEN

B cell leukemia/lymphoma 3 (Bcl3) plays a pivotal role in immune homeostasis, cellular proliferation, and cell survival, as a co-activator or co-repressor of transcription of the NF-κB family. Recently, it was reported that Bcl3 positively regulates pluripotency genes, including Oct4, in mouse embryonic stem cells (mESCs). However, the role of Bcl3 in the maintenance of pluripotency and self-renewal activity is not fully established. Here, we report the dynamic regulation of the proliferation, pluripotency, and self-renewal of mESCs by Bcl3 via an influence on Nanog transcriptional activity. Bcl3 expression is predominantly observed in immature mESCs, but significantly decreased during cell differentiation by LIF depletion and in mESC-derived EBs. Importantly, the knockdown of Bcl3 resulted in the loss of self-renewal ability and decreased cell proliferation. Similarly, the ectopic expression of Bcl3 also resulted in a significant reduction of proliferation, and the self-renewal of mESCs was demonstrated by alkaline phosphatase staining and clonogenic single cell-derived colony assay. We further examined that Bcl3-mediated regulation of Nanog transcriptional activity in mESCs, which indicated that Bcl3 acts as a transcriptional repressor of Nanog expression in mESCs. In conclusion, we demonstrated that a sufficient concentration of Bcl3 in mESCs plays a critical role in the maintenance of pluripotency and the self-renewal of mESCs via the regulation of Nanog transcriptional activity. [BMB Reports 2018; 51(2): 92-97].


Asunto(s)
Autorrenovación de las Células , Regulación hacia Abajo/genética , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Proteína Homeótica Nanog/genética , Células Madre Pluripotentes/citología , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Animales , Proteínas del Linfoma 3 de Células B , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Ratones , Modelos Biológicos , Proteína Homeótica Nanog/metabolismo , Células Madre Pluripotentes/metabolismo , Regiones Promotoras Genéticas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA