Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2401875, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598692

RESUMEN

The practical application of flexible and stretchable electronics is significantly influenced by their thermal and chemical stability. Elastomer substrates and encapsulation, due to their soft polymer chains and high surface-area-to-volume ratio, are particularly susceptible to high temperatures and flame. Excessive heat poses a severe threat of damage and decomposition to these elastomers. By leveraging water as a high enthalpy dissipating agent, here, a hydrogel encapsulation strategy is proposed to enhance the flame retardancy and thermal stability of stretchable electronics. The hydrogel-based encapsulation provides thermal protection against flames for more than 10 s through the evaporation of water. Further, the stretchability and functions automatically recover by absorbing air moisture. The incorporation of hydrogel encapsulation enables stretchable electronics to maintain their functions and perform complex tasks, such as fire saving in soft robotics and integrated electronics sensing. With high enthalpy heat dissipation, encapsulated soft electronic devices are effectively shielded and retain their full functionality. This strategy offers a universal method for flame retardant encapsulation of stretchable electronic devices.

3.
J Med Internet Res ; 26: e47508, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38294856

RESUMEN

BACKGROUND: The COVID-19 pandemic raised wide concern from all walks of life globally. Social media platforms became an important channel for information dissemination and an effective medium for public sentiment transmission during the COVID-19 pandemic. OBJECTIVE: Mining and analyzing social media text information can not only reflect the changes in public sentiment characteristics during the COVID-19 pandemic but also help the government understand the trends in public opinion and reasonably control public opinion. METHODS: First, this study collected microblog comments related to the COVID-19 pandemic as a data set. Second, sentiment analysis was carried out based on the topic modeling method combining latent Dirichlet allocation (LDA) and Bidirectional Encoder Representations from Transformers (BERT). Finally, a machine learning linear regression (ML-LR) model combined with a sparse matrix was proposed to explore the evolutionary trend in public opinion on social media and verify the high accuracy of the model. RESULTS: The experimental results show that, in different stages, the characteristics of public emotion are different, and the overall trend is from negative to positive. CONCLUSIONS: The proposed method can effectively reflect the characteristics of the different times and space of public opinion. The results provide theoretical support and practical reference in response to public health and safety events.


Asunto(s)
COVID-19 , Medios de Comunicación Sociales , Humanos , Opinión Pública , Pandemias , Análisis de Sentimientos , China
4.
Adv Mater ; 36(8): e2311255, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38030137

RESUMEN

Hydrogels are ideal interfacing materials for on-skin healthcare devices, yet their susceptibility to dehydration hinders their practical use. While incorporating hygroscopic metal salts can prevent dehydration and maintain ionic conductivity, concerns arise regarding metal toxicity due to the passage of small ions through the skin barrier. Herein, an antidehydration hydrogel enabled by the incorporation of zwitterionic oligomers into its network is reported. This hydrogel exhibits exceptional water retention properties, maintaining ≈88% of its weight at 40% relative humidity, 25 °C for 50 days and about 84% after being heated at 50 °C for 3 h. Crucially, the molecular weight design of the embedded oligomers prevents their penetration into the epidermis, as evidenced by experimental and molecular simulation results. The hydrogel allows stable signal acquisition in electrophysiological monitoring of humans and plants under low-humidity conditions. This research provides a promising strategy for the development of epidermis-safe and biocompatible antidehydration hydrogel interfaces for on-skin devices.


Asunto(s)
Deshidratación , Hidrogeles , Humanos , Piel , Conductividad Eléctrica , Sales (Química)
5.
Adv Mater ; 35(29): e2301290, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37151164

RESUMEN

Myoelectric control utilizes electrical signals generated from the voluntary contraction of remaining muscles in an amputee's stump to operate a prosthesis. Precise and agile control requires low-level myoelectric signals (below 10% of maximum voluntary contraction, MVC) from weak muscle contractions such as phantom finger or wrist movements, but imbalanced calcium concentration in atrophic skin can distort the signals. This is due to poor ionic-electronic coupling between skin and electrode, which often causes excessive muscle contraction, fatigue, and discomfort during delicate tasks. To overcome this challenge, a new strategy called molecular anchoring is developed to drive hydrophobic molecular effectively interact with and embed into stratum corneum for high coupling regions between ionic fluxes and electronic currents. The use of hydrophobic poly(N-vinyl caprolactam) gel has resulted in an interface impedance of 20 kΩ, which is 1/100 of a commercial acrylic-based electrode, allowing the detection of ultralow myoelectric signals (≈1.5% MVC) that approach human limits. With this molecular anchoring technology, amputees operate a prosthesis with greater dexterity, as phantom finger and wrist movements are predicted with 97.6% accuracy. This strategy provides the potential for a comfortable human-machine interface when amputees accomplish day-to-day tasks through precise and dexterous myoelectric control.


Asunto(s)
Amputados , Miembros Artificiales , Humanos , Electromiografía/métodos , Músculos , Contracción Muscular/fisiología
6.
Nature ; 614(7948): 456-462, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36792740

RESUMEN

Stretchable hybrid devices have enabled high-fidelity implantable1-3 and on-skin4-6 monitoring of physiological signals. These devices typically contain soft modules that match the mechanical requirements in humans7,8 and soft robots9,10, rigid modules containing Si-based microelectronics11,12 and protective encapsulation modules13,14. To make such a system mechanically compliant, the interconnects between the modules need to tolerate stress concentration that may limit their stretching and ultimately cause debonding failure15-17. Here, we report a universal interface that can reliably connect soft, rigid and encapsulation modules together to form robust and highly stretchable devices in a plug-and-play manner. The interface, consisting of interpenetrating polymer and metal nanostructures, connects modules by simply pressing without using pastes. Its formation is depicted by a biphasic network growth model. Soft-soft modules joined by this interface achieved 600% and 180% mechanical and electrical stretchability, respectively. Soft and rigid modules can also be electrically connected using the above interface. Encapsulation on soft modules with this interface is strongly adhesive with an interfacial toughness of 0.24 N mm-1. As a proof of concept, we use this interface to assemble stretchable devices for in vivo neuromodulation and on-skin electromyography, with high signal quality and mechanical resistance. We expect such a plug-and-play interface to simplify and accelerate the development of on-skin and implantable stretchable devices.


Asunto(s)
Electromiografía , Electrónica Médica , Nanoestructuras , Docilidad , Polímeros , Prótesis e Implantes , Dispositivos Electrónicos Vestibles , Humanos , Nanoestructuras/química , Polímeros/química , Piel , Monitoreo Fisiológico , Electrónica Médica/instrumentación , Electrónica Médica/métodos , Electromiografía/instrumentación
7.
Health Promot Int ; 38(1)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36789498

RESUMEN

Using the input-process-output (IPO) model as an organizing framework, this paper provides an overview of the literature on multiple dimensions of dietary supplement (DS) consumption. Based on a systematic review of 174 studies from different disciplines over two decades, we pinpointed the key topics that have been examined in this growing body of literature and identified the major themes within DS consumption. Moreover, we integrated the major themes in inputs, processes, and outputs to develop a comprehensive understanding of individuals' DS consumption behaviors, motivations, and social mechanisms underlying such behaviors. This research has implications for health consumption and promotion research. We identified DS consumption as a social-cultural process in which individuals practice lifelong self-learning and socialization activities through which lay health knowledge may be developed. Accordingly, their DS use motives may be related to health improvement or not (e.g. identity expressions), which are formed during interactions with various stakeholders in the health marketplace. When confronting the contemporary health promotion culture and self-care paradigm, it is important for researchers to deepen our knowledge of consumers' motives for DS consumption and the underlying social mechanisms to aid consumers' health consumption decisions and guide the multiple stakeholders in the health marketplace.


Asunto(s)
Suplementos Dietéticos , Motivación , Humanos , Conocimientos, Actitudes y Práctica en Salud , Autocuidado
8.
Natl Sci Rev ; 10(1): nwac172, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36684519

RESUMEN

Stretchable electronics are emerging for personalized and decentralized clinics, wearable devices and human-machine interactions. Nowadays, separated stretchable functional parts have been well developed and are approaching practical usage. However, the production of whole stretchable devices with full functions still faces a huge challenge: the integration of different components, which was hindered by the mechanical mismatch and stress/strain concentration at the connection interfaces. To avoid connection failure in stretchable devices, a new research focus is to improve the interfacial binding strength between different components. In this review, recent developments to enhance interfacial strength in wearable/implantable electronics are introduced and catalogued into three major strategies: (i) covalent bonding between different device parts, (ii) molecular interpenetration or mechanical interlocking at the interfaces and (iii) covalent connection between the human body and devices. Besides reviewing current methods, we also discuss the existing challenges and possible improvements for stretchable devices from the aspect of interfacial connections.

9.
ACS Nano ; 16(10): 16833-16842, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36194555

RESUMEN

Shape reconfigurable devices, e.g., foldable phones, have emerged with the development of flexible electronics. But their rigid frames limit the feasible shapes for the devices. To achieve freely changeable shapes yet keep the rigidity of devices for user-friendly operations, stiffness-tunable materials are desired, especially under electrical control. However, current such systems are multilayer with at least a heater layer and a structural layer, leading to complex fabrication, high cost, and loss of reprocessability. Herein, we fabricate covalent adaptable networks-carbon nanotubes (CAN-CNT) composites to realize Joule heating controlled stiffness. The nanocomposites function as stiffness-tunable matrices, electric heaters, and softening sensors all by themselves. The self-reporting of softening is used to regulate the power control, and the sensing mechanism is investigated by simulating the CNT-polymer chain interactions at the nanoscale during the softening process. The nanocomposites not only have adjustable mechanical and thermodynamic properties but also are easy to fabricate at low cost and exhibit reprocessability and recyclability benefiting from the dynamic exchange reactions of CANs. Shape and stiffness control of flexible display systems are demonstrated with the nanocomposites as framing material, where freely reconfigurable shapes are realized to achieve convenient operation, wearing, or storage, fully exploiting their flexible potential.

10.
Langmuir ; 38(43): 13272-13278, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36254851

RESUMEN

A diselenide bond, as a dynamic covalent bond, is a versatile tool to construct smart interfaces, which can respond to visible light. In this work, we used microcontact printing (µCP) to construct diselenide patterns on quartz substrates. Fluorescent patterns were obtained on the modified surfaces via the visible-light-induced diselenide metathesis reaction, which allowed the patterning process to be fast, dynamically erasable, and compatible with different fluorescent molecules including rhodamine B and boron-dipyrromethene (BODIPY) used in this work. A variety of analytical methods offered comprehensive evidence for the success of the printing of diselenides here. We further printed diselenide and disulfide intersecting stripes on one single quartz substrate layer by layer and introduced rhodamine B and BODIPY to obtain a multicolored pattern simultaneously. By taking advantage of their responsiveness to different wavelengths, the composite pattern of disulfides and diselenides could be erased by two stepwise stages. The fluorescent images of the modified substrate showed a good agreement with the pattern of the poly(dimethylsiloxane) (PDMS) stamp, indicating the methodology with a potential application for information storage.

11.
Adv Mater ; 34(47): e2207016, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36134530

RESUMEN

Tactile technologies that can identify human body features are valuable in clinical diagnosis and human-machine interactions. Previously, cutting-edge tactile platforms have been able to identify structured non-living objects; however, identification of human body features remains challenging mainly because of the irregular contour and heterogeneous spatial distribution of softness. Here, freestanding and scalable tactile platforms of force-softness bimodal sensor arrays are developed, enabling tactile gloves to identify body features using machine-learning methods. The bimodal sensors are engineered by adding a protrusion on a piezoresistive pressure sensor, endowing the resistance signals with combined information of pressure and the softness of samples. The simple design enables 112 bimodal sensors to be integrated into a thin, conformal, and stretchable tactile glove, allowing the tactile information to be digitalized while hand skills are performed on the human body. The tactile glove shows high accuracy (98%) in identifying four body features of a real person, and four organ models (healthy and pathological) inside an abdominal simulator, demonstrating identification of body features of the bimodal tactile platforms and showing their potential use in future healthcare and robotics.


Asunto(s)
Tecnología Háptica , Robótica , Humanos , Tacto , Mano , Fenómenos Mecánicos
12.
Artículo en Inglés | MEDLINE | ID: mdl-35886642

RESUMEN

Driven by China's peak carbon emissions and carbon neutrality goals, each region should choose a suitable local implementation path according to local conditions, so it is of great significance to mine and analyze the critical influencing factors of regional carbon emissions. Therefore, this paper integrates grey relation analysis (GRA) and an improved STIRPAT model and selects the Yangtze River Delta region of China as the research object to analyze the factors affecting carbon emissions in four provinces in the region. Firstly, it uses the IPCC method to calculate the energy carbon emissions of each province. Secondly, according to the existing research, the relevant influencing factors of carbon emissions are sorted and summarized as candidate sets and this paper uses GRA to calculate the correlation degree of the above candidate sets. On this basis, this paper combines with the characteristics of the improved STIRPAT model to determine the index selection criteria and filter out the critical factors of each province. Thirdly, an improved STIRPAT model is constructed for each province to explore the influence of critical factors and analyze the influencing factors of carbon emissions in detail. The empirical results show that during the period from 2005 to 2019, the carbon emissions of the four provinces in the Yangtze River Delta are significantly different in structure and trend. At the same time, the critical influencing factors of each province are different and the influence of the same factor on different regions is significantly different. Finally, the policy suggestions for the provinces to achieve their peak carbon emissions and carbon neutrality goals are precisely tailored to the different carbon emission influencing factors.


Asunto(s)
Carbono , Ríos , Carbono/análisis , Dióxido de Carbono/análisis , China , Desarrollo Económico
13.
Artículo en Inglés | MEDLINE | ID: mdl-35653653

RESUMEN

The development of underwater remote stimulus-responsive self-healing polymer materials for applications in inaccessible and urgent situations is very challenging because water can readily disturb traditional noncovalent bonds and absorb heat, UV light, IR light, and electromagnetic wave energy at the wave band of micrometers and millimeters. Herein, visible-light-responsive diselenide bonds are employed as the healing moieties to produce a water-enhanced and remote self-healing elastomer triggered by a blue laser, which possesses excellent underwater transmission capability. During healing, the strain at break reaches ∼200% in 5 min and its toughness almost fully recovers within 1 h, which is estimated to be the fastest reported to date for healing silicone elastomers with a healing efficiency above 90%. The remote underwater pipeline sealing is instantly accomplished with the diselenide-containing elastomers by a blue laser 3 m away, thereby providing a direction for future emergent healing applications.

14.
Artículo en Inglés | MEDLINE | ID: mdl-35457325

RESUMEN

Nowadays, driven by green and low-carbon development, accelerating the innovation of joint prevention and control system of air pollution and collaborating to reduce greenhouse gases has become the focus of China's air pollution prevention and control during the "Fourteenth Five-Year Plan" period (2021-2025). In this paper, the air quality index (AQI) data of 48 cities in three major urban agglomerations of Beijing-Tianjin-Hebei, Pearl River Delta and Yangtze River Delta, were selected as samples. Firstly, the air pollution spatial correlation weighted networks of three urban agglomerations are constructed and the overall characteristics of the networks are analyzed. Secondly, an influential nodes identification method, local-and-global-influence for weighted network (W_LGI), is proposed to identify the influential cities in relatively central positions in the networks. Then, the study area is further focused to include influential cities. This paper builds the air pollution spatial correlation weighted network within an influential city to excavate influential nodes in the city network. It is found that these influential nodes are most closely associated with the other nodes in terms of spatial pollution, and have a certain ability to transmit pollutants to the surrounding nodes. Finally, this paper puts forward policy suggestions for the prevention and control of air pollution from the perspective of the spatial linkage of air pollution. These will improve the efficiency and effectiveness of air pollution prevention and control, jointly achieve green development and help achieve the "carbon peak and carbon neutrality" goals.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Beijing , Carbono , China , Ciudades , Monitoreo del Ambiente/métodos , Material Particulado/análisis
15.
Adv Mater ; 34(7): e2101339, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34978104

RESUMEN

Stretchable electronics incorporating critical sensing, data transmission, display and powering functionalities, is crucial to emerging wearable healthcare applications. To date, methods to achieve stretchability of individual functional devices have been extensively investigated. However, integration strategies of these stretchable devices to achieve all-stretchable systems are still under exploration, in which the reliable stretchable interconnection is a key element. Here, solderless stretchable interconnections based on mechanically interlocking microbridges are developed to realize the assembly of individual stretchable devices onto soft patternable circuits toward multifunctional all-stretchable platforms. This stretchable interconnection can effectively bridge interlayer conductivity with tight adhesion through both conductive microbridges and selectively distributed adhesive polymer. Consequently, enhanced stretchability up to a strain of 35% (R/R0  ≤ 5) is shown, compared with conventional solder-assisted connections which lose electrical conduction at a strain of less than 5% (R/R0  ≈ 30). As a proof of concept, a self-powered all-stretchable data-acquisition platform is fabricated by surface mounting a stretchable strain sensor and a supercapacitor onto a soft circuit through solderless interconnections. This solderless interconnecting strategy for surface-mountable devices can be utilized as a valuable technology for the integration of stretchable devices to achieve all-soft multifunctional systems.

16.
ACS Appl Mater Interfaces ; 13(42): 50422-50429, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34649428

RESUMEN

Remotely controlled on-demand functional healing is vital to components that are difficult to access and repair in distance such as satellites and unmanned cruising aircrafts. Compared with other stimuli, a blue laser is a better choice to input energy to the damaged area in distance because of its high energy density and low dissipation through the air. Herein, diselenide-containing polyurethane (PUSe) is first employed to fabricate visible light-responsive stretchable conductive composites with multiwalled carbon nanotubes (MWCNTs). Then, laser-induced remote healing was realized based on the characteristics of long-distance propagation of lasers and the dynamic properties of diselenide bonds. Moreover, the PUSe/MWCNT composite film can be used to transfer an electrical signal in the circuit containing a signal generator. This laser-induced remote healing of conductivity paves the way for developing healing conductors which are difficult to access and repair.

17.
Adv Mater ; 33(42): e2105194, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34476852

RESUMEN

Programming 2D sheets to form 3D shapes is significant for flexible electronics, soft robots, and biomedical devices. Stress regulation is one of the most used methods, during which external force is usually needed to keep the stress, leading to complex processing setups. Here, by introducing dynamic diselenide bonds into shape-memory materials, unconstrained shape programming with light is achieved. The material could hold and release internal stress by themselves through the shape-memory effect, simplifying programming setups. The fixed stress could be relaxed by light to form stress gradients, leading to out-of-plane deformations through asymmetric contractions. Benefiting from the variability of light irradiation, complex 3D configurations can be obtained conveniently from 2D polymer sheets. Besides, remotely controlled "4D assembly" and actuation, including object transportation and self-lifting, can be achieved by sequential deformation. Taking advantage of the high spatial resolution of light, this material can also produce 3D microscopic patterns. The light-induced stress gradients significantly simplify 3D shape programming procedures with improved resolution and complexity and have great potential in soft robots, smart actuators, and anti-counterfeiting techniques.

18.
ACS Nano ; 15(6): 9955-9966, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34110782

RESUMEN

Noninvasive and seamless interfacing between the sensors and human skin is highly desired for wearable healthcare. Thin-film-based soft and stretchable sensors can to some extent form conformal contact with skin even under dynamic movements for high-fidelity signals acquisition. However, sweat accumulation underneath these sensors for long-term monitoring would compromise the thermal-wet comfort, electrode adherence to the skin, and signal fidelity. Here, we report the fabrication of a highly thermal-wet comfortable and conformal silk-based electrode, which can be used for on-skin electrophysiological measurement under sweaty conditions. It is realized through incorporating conducting polymers poly(3,4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT:PSS) into glycerol-plasticized silk fiber mats. Glycerol plays the role of tuning the mechanical properties of silk fiber mats and enhancing the conductivity of PEDOT:PSS. Our silk-based electrodes show high stretchability (>250%), low thermal insulation (∼0.13 °C·m2·W-1), low evaporative resistance (∼23 Pa·m2·W-1, 10 times lower than ∼1.3 mm thick commercial gel electrodes), and high water-vapor transmission rate (∼117 g·m-2·h-1 under sweaty conditions, 2 times higher than skin water loss). These features enable a better electrocardiography signal quality than that of commercial gel electrodes without disturbing the heat dissipation during sweat evaporation and provide possibilities for textile integration to monitor the muscle activities under large deformation. Our glycerol-plasticized silk-based electrodes possessing superior physiological comfortability may further engage progress in on-skin electronics with sweat tolerance.


Asunto(s)
Seda , Sudor , Conductividad Eléctrica , Electrodos , Humanos , Piel
19.
Adv Mater ; 32(45): e2004805, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33006183

RESUMEN

Artificial scent screening systems (known as electronic noses, E-noses) have been researched extensively. A portable, automatic, and accurate, real-time E-nose requires both robust cross-reactive sensing and fingerprint pattern recognition. Few E-noses have been commercialized because they suffer from either sensing or pattern-recognition issues. Here, cross-reactive colorimetric barcode combinatorics and deep convolutional neural networks (DCNNs) are combined to form a system for monitoring meat freshness that concurrently provides scent fingerprint and fingerprint recognition. The barcodes-comprising 20 different types of porous nanocomposites of chitosan, dye, and cellulose acetate-form scent fingerprints that are identifiable by DCNN. A fully supervised DCNN trained using 3475 labeled barcode images predicts meat freshness with an overall accuracy of 98.5%. Incorporating DCNN into a smartphone application forms a simple platform for rapid barcode scanning and identification of food freshness in real time. The system is fast, accurate, and non-destructive, enabling consumers and all stakeholders in the food supply chain to monitor food freshness.


Asunto(s)
Colorimetría/instrumentación , Aprendizaje Profundo , Calidad de los Alimentos , Celulosa/análogos & derivados , Celulosa/química , Quitosano/química , Colorantes/química , Nanocompuestos/química , Porosidad
20.
Adv Mater ; 32(26): e2001496, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32449249

RESUMEN

Underwater vital signs monitoring of respiratory rate, blood pressure, and the heart's status is essential for healthcare and sports management. Real-time electrocardiography (ECG) monitoring underwater can be one solution for this. However, the current electrodes used for ECGs are not suitable for aquatic applications since they may lose their adhesiveness to skin, stable conductivity, or/and structural stability when immersed into water. Here, the design and fabrication of water-resistant electrodes to repurpose stretchable electrodes for applications in an aquatic environment are reported. The electrodes are composed of stretchable metal-polymer composite film as the substrate and dopamine-containing polymer as a coating. The polymer is designed to possess underwater adhesiveness from the dopamine motif, water stability from the main scaffold, and ionic conductivity from the carboxyl groups for signal transmission. Stable underwater conductivity and firm adhesion to skin allow the electrodes to collect reliable ECG signals under various conditions in water. It is shown that wearable devices incorporated with the water-resistant electrodes can acquire real-time ECG signals during swimming, which can be used for revealing the heart condition. These water-resistant electrodes realize underwater detection of ECG signals and can be used for health monitoring and sports management during aquatic activities.


Asunto(s)
Electrocardiografía , Monitoreo Fisiológico/métodos , Agua/química , Dopamina/química , Conductividad Eléctrica , Electrodos , Corazón/fisiología , Frecuencia Cardíaca , Humanos , Metales/química , Monitoreo Fisiológico/instrumentación , Polímeros/química , Natación , Dispositivos Electrónicos Vestibles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA