Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Inflammation ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38865056

RESUMEN

Microsomal PGE2 synthase (mPGES)-1 is the key enzyme responsible for synthesizing inflammatory prostaglandin E2 (PGE2). Our previous studies have shown that deletion mPGES-1 in myeloid cells hinders atherogenesis, suppresses vascular proliferative response to injury and enhances survival after myocardial infarction. Here we aimed to further explore the influence of myeloid cell mPGES-1 deletion in abdominal aortic aneurysm (AAA) formation. The AAA was triggered by applying 0.5 M calcium phosphate (CaPO4) to the infrarenal aorta of both myeloid mPGES-1 knockout (Mac-mPGES-1-KO) and their littermate control Mac-mPGES-1-WT mice. AAA induction was assessed by calculating the expansion of the infrarenal aortic diameter 4 weeks after CaPO4 application. The maximum diameters of the aortas were measured by morphometry and the mean maximal diameters were calculated. Paraffin sections of the infrarenal aortas were examined for morphological analysis and immunohistochemical staining. The results showed that myeloid cell mPGES-1 deletion significantly mitigated AAA formation, including reducing expansion of the infrarenal aorta, preventing elastic lamellar degradation, and decreasing aortic calcium deposition. Immunohistochemical staining further indicated that macrophage infiltration and matrix metalloproteinase 2 (MMP2) expression was attenuated in the Mac-mPGES-1-KO aortas. Consistently, in vitro experiments showed that expression of pro-inflammatory cytokines and MMPs was significantly reduced when mPGES-1 was lacking in the primary cultured peritoneal macrophages. These data altogether demonstrated that deletion of mPGES-1 in myeloid cells may attenuate AAA formation and targeting myeloid cell mPGES-1 could potentially offer an effective strategy for the treatment and prevention of vascular inflammatory diseases.

2.
Sci Total Environ ; 938: 173233, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38763196

RESUMEN

2-Methylisoborneol (2-MIB) is a common and widely distributed off-flavor compound in water. However, the toxic mechanisms of 2-MIB on aquatic organisms remain largely unexplored. In this study, grass carp larvae were exposed to different concentrations (0, 5, and 20 µg L-1) of 2-MIB for 96 h. The accumulation of 2-MIB in the dorsal muscle was measured. Histological analysis, ultrastructure observations, and transcriptomic sequencing were conducted on the liver tissues. The results showed that 2-MIB accumulated significantly in the fish muscle, with the accumulation increasing as the exposure concentration increased through gas chromatography-mass spectrometry (GC-MS) detection. Histological and ultrastructure observations indicated that 2-MIB caused concentration-dependent inflammatory infiltration and mitochondrial damage in the liver. Transcriptomic analysis revealed lipid metabolism disorders induced by exposure to 2-MIB in grass carp. Additionally, 5 µg L-1 2-MIB affected the neurodevelopment and cardiovascular system of grass carp larvae through extracellular matrix (ECM)-receptor interaction and focal adhesion pathway. Furthermore, several pathways related to the digestive system were significantly enriched, implying that 2-MIB may impact pancreatic secretion function, protein digestion and absorption processes. These findings provide new insights into the potential toxicological mechanisms of 2-MIB.


Asunto(s)
Carpas , Inflamación , Transcriptoma , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidad , Inflamación/inducido químicamente , Transcriptoma/efectos de los fármacos , Perfilación de la Expresión Génica , Canfanos/toxicidad , Hígado/efectos de los fármacos , Hígado/patología , Larva/efectos de los fármacos
3.
Materials (Basel) ; 17(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38612076

RESUMEN

The harsh service environment of aeroengine hot-end components requires superalloys possessing excellent antioxidant properties. This study investigated the effect of pre-strain on the oxidation behavior of polycrystalline Ni3Al-based superalloys. The growth behaviors of oxidation products were analyzed by scanning electron microscope, transmission electron microscope, X-ray Photoelectron Spectroscopy and Raman spectroscopy. The results indicated that the 5% pre-strained alloys exhibited lower mass gain, shallower oxidation depth and more compact oxide film structures compared to the original alloy. This is mainly attributed to the formation of rapid diffusion paths for Al atoms diffusing to the surface under 5% pre-strain, which promotes the faster formation of protective Al2O3 film while continuing to increase the pre-strain to 25% results in less protective transient oxidation behavior being aggravated due to the increase in dislocation density within the alloy, which prevents the timely formation of the protective Al2O3 film, resulting in uneven oxidation behavior on the alloy.

4.
IEEE Trans Haptics ; PP2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38502610

RESUMEN

This paper proposed linear and non-linear models for predicting human-exoskeleton coupling forces to enhance the studies of human-exoskeleton coupling dynamics. Then the parameters of these models were identified with a newly designed platform and the help of ten adult male and ten adult female volunteers (Age: 23.65 ±4.03 years, Height: 165.60 ±8.32 mm, Weight: 62.35 ±14.09 kg). Comparing the coupling force error predicted by the models with experimental measurements, one obtained a more accurate and robust prediction of the coupling forces with the non-linear model. Moreover, statistical analysis of the experimental data was performed to reveal the correlation between the coupling parameters and coupling positions and looseness. Finally, backpropagation (BP) neural network and Gaussian Process Regression (GPR) were used to predict the human-exoskeleton coupling parameters. The significance of each input parameter to the human-exoskeleton coupling parameters was assessed by analyzing the sensitivity of GPR performance to its inputs. The novelty and contribution are the establishment of the non-linear coupling model, the design of the coupling experimental platform and a regression model which provides a possibility to obtain human-exoskeleton without experimental measurement and identification. Based on this work, one can optimize control algorithm and design comfortable human-exoskeleton interaction.

5.
Sheng Li Xue Bao ; 76(1): 105-118, 2024 Feb 25.
Artículo en Chino | MEDLINE | ID: mdl-38444136

RESUMEN

Prostaglandin E2 (PGE2) is an important lipid molecule derived from arachidonic acid, which regulates a variety of physiological and pathological activities. Based on the inhibition of inflammatory PGE2 production, non-steroidal anti-inflammatory drugs (NSAIDs) are considered as the most commonly used drugs to treat inflammatory diseases and to relieve fever and pain symptoms. PGE2 mediates its functions via four different G protein-coupled receptors, named EP1-EP4. Though the limited distribution and low PGE2 affinity of EP1, it plays important roles in the maintenance of many physiological functions and homeostasis. Moreover, EP1 is widely involved in the inflammatory response, pain perception and multisystem pathological function regulation. In this review, we will briefly summarize the recent advances on the physiological and pathophysiological function of EP1 and its targeted drugs development.


Asunto(s)
Dinoprostona , Dolor , Humanos , Ácido Araquidónico , Homeostasis
6.
Ecotoxicol Environ Saf ; 269: 115775, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38070413

RESUMEN

Geosmin is an environmental pollutant that causes off-flavor in water and aquatic products. The high occurrence of geosmin contamination in aquatic systems and aquaculture raises public awareness, however, few studies have investigated the response pathways of geosmin stress on freshwater fish. In this research, grass carp were exposed to 50 µg/L geosmin for 96 h, liver tissue was sequenced and validated using real-time qPCR. In total of 528 up-regulated genes and 488 down-regulated genes were observed, includes cytochrome P450 and uridine diphosphate (UDP)-glucuronosyltransferase related genes. KEGG analysis showed that chemical carcinogenesis-DNA adducts, metabolism of xenobiotics by cytochrome P450, drug metabolism-cytochrome P450 pathway was enriched. Common genes from the target genes of microRNAs and differential expression genes are enriched in metabolism of xenobiotics cytochrome P450 pathway. Two miRNAs (dre-miR-146a and miR-212-3p) down regulated their target genes (LOC127510138 and adh5, respectively) which are enriched cytochrome P450 related pathway. The results present that geosmin is genetoxic to grass carp and indicate that cytochrome P450 system and UDP-glucuronosyltransferase play essential roles in biotransformation of geosmin. MicroRNAs regulate the biotransformation of geosmin by targeting specific genes, which contributes to the development of strategies to manage its negative impacts in both natural and artificial environments.


Asunto(s)
Carpas , Enfermedades de los Peces , MicroARNs , Naftoles , Animales , MicroARNs/genética , MicroARNs/metabolismo , Carpas/genética , Carpas/metabolismo , ARN Mensajero , Sistema Enzimático del Citocromo P-450/genética , Agua Dulce , Glucuronosiltransferasa/genética , Uridina Difosfato , Proteínas de Peces/genética , Proteínas de Peces/metabolismo
7.
Small Methods ; : e2301504, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38148311

RESUMEN

Developing efficient oxygen evolution reaction (OER) electrocatalysts can greatly advance the commercialization of proton exchange membrane (PEM) water electrolysis. However, the unclear and disputed reaction mechanism and structure-activity relationship of OER pose significant obstacles. Herein, the active site and intermediate for OER on AuIr nanoalloys are simultaneously identified and correlated with the activity, through the integration of in situ shell-isolated nanoparticle-enhanced Raman spectroscopy and X-ray absorption spectroscopy. The AuIr nanoalloys display excellent OER performance with an overpotential of only 246 mV to achieve 10 mA cm-2 and long-term stability under strong acidic conditions. Direct spectroscopic evidence demonstrates that * OO adsorbed on IrOx sites is the key intermediate for OER, and it is generated through the O-O coupling of adsorbed oxygen species directly from water, providing clear support for the adsorbate evolution mechanism. Moreover, the Raman information of the * OO intermediate can serve as a universal "in situ descriptor" that can be obtained both experimentally and theoretically to accelerate the catalyst design. It unveils that weakening the interactions of * OO on the catalysts and facilitating its desorption would boost the OER performance. This work deepens the mechanistic understandings on OER and provides insightful guidance for the design of more efficient OER catalysts.

8.
Se Pu ; 41(11): 1021-1029, 2023 Nov.
Artículo en Chino | MEDLINE | ID: mdl-37968821

RESUMEN

Organophosphorus flame retardants (OPFRs) have emerged as good alternatives to brominated flame retardants, the use of which is globally restricted. In this study, a screening method based on QuEChERS-gas chromatography-quadrupole time-of-flight mass spectrometry (GC-Q-TOF/MS) was established for the determination of 21 OPFRs in rice. First, full scan (scanning range, m/z 50-450) was performed with a mixed standard solution of the 21 OPFRs (0.1 µg/g) by GC-Q-TOF/MS. The fragmentation pathways of these OPFRs were then investigated to explore their cleavage fragments, the interrelationships among fragments, and the possible cleavage modes of alkylated, chlorinated, and aromatic OPFRs. The retention times, isotopic abundance ratios, and molecular formulas of the characteristic fragments as well as the exact mass of the compounds were obtained to establish a mass spectral library of the OPFRs. Rice samples were extracted and purified by the QuEChERS method, and 0.5% formate acetonitrile solution was used as the extraction solvent; 4 g of magnesium sulfate, 1 g of sodium chloride, 0.5 g of disodium hydrogen citrate, and 1 g of sodium citrate as the extraction-salt combination; and 50 mg of primary secondary amine (PSA), 50 mg of octadecylsilane (C18), and 150 mg of magnesium sulfate as the purification materials. The chromatographic separation of the 21 OPFRs was completed within 16 min under optimized temperature program conditions on the DB-5MS UI column. The screening parameters were optimized, and a full scan of the samples was performed under the following conditions: number of characteristic fragment ions ≥2; accurate mass window=±2×10-5 (±20 ppm); retention time deviation=±0.2 min, and ion abundance deviation<20%. The developed method was applied to the screening 21 OPFRs in the samples. The results indicated that the matrix interference was greatly reduced by decreasing the extraction accurate mass window, thereby improving the signal-to-noise ratio of the analytes. The targets were extracted from the matrix interference and background noise using deconvolution software, which improved the match between the target compounds and the mass spectral library. The detection rates of alkyl and aromatic OPFRs increased by 22% and 25%, respectively, when the spiking level was increased from 2 to 10 ng/g. Among the chlorinated OPFRs, only tris(2-chloroisopropyl) phosphate (TCIPP) was not detected at a spiking level of 2 ng/g, indicating that chlorinated OPFRs could be identified even at low concentrations. The characteristic ions of the detected compounds matched those of the home-made mass spectral library well, indicating that the practical application of the home-made mass spectral library. The established screening method was applied in the determination of OPFRs in rice samples from different regions in China. A total of 11 OPFRs were detected, among which trimethyl phosphate (TMP), tri-iso-butyl phosphate (TiBP), and tris(3,5-dimethylphenyl) phosphate (T35DMPP) had the highest detection rates. These results indicate that these three OPFRs are widely used and can easily come into contact with rice samples through various routes. Differences in the types of OPFRs detected in the actual samples may be related to the types of OPFRs produced in local factories. OPFRs can be detected in rice samples by the developed GC-Q-TOF/MS screening method, which is helpful for the identification of OPFRs in complex matrix samples.


Asunto(s)
Retardadores de Llama , Oryza , Compuestos Organofosforados/análisis , Retardadores de Llama/análisis , Sulfato de Magnesio , Cromatografía de Gases y Espectrometría de Masas/métodos , Fosfatos
9.
Nat Prod Bioprospect ; 13(1): 50, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37946001

RESUMEN

Mushrooms have been utilized by humans for thousands of years due to their medicinal and nutritional properties. They are a crucial natural source of bioactive secondary metabolites, and recent advancements have led to the isolation of several alkynyl-containing compounds with potential medicinal uses. Despite their relatively low abundance, naturally occurring alkynyl compounds have attracted considerable attention due to their high reactivity. Bioactivity studies have shown that alkynyl compounds exhibit significant biological and pharmacological activities, including antitumor, antibacterial, antifungal, insecticidal, phototoxic, HIV-inhibitory, and immunosuppressive properties. This review systematically compiles 213 alkynyl-containing bioactive compounds isolated from mushrooms since 1947 and summarizes their diverse biological activities, focusing mainly on cytotoxicity and anticancer effects. This review serves as a detailed and comprehensive reference for the chemical structures and bioactivity of alkynyl-containing secondary metabolites from mushrooms. Moreover, it provides theoretical support for the development of chemical constituents containing alkynyl compounds in mushrooms based on academic research and theory.

10.
Phys Chem Chem Phys ; 25(35): 24022-24030, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37650553

RESUMEN

Single-atom catalysts (SACs) are emerging as promising catalysts in the field of the electrocatalytic CO2 reduction reaction (CO2RR). Herein, a series of 3d to 5d transition metal atoms supported on triazine-based graphite carbon nitride (TM@TGCN) as a CO2 reduction catalyst are studied via density functional theory computations. Eventually, four TM@TGCN catalysts (TM = Ni, Rh, Os, and Ir) are selected using a five-step screening method, in which Rh@TGCN and Ni@TGCN show a low limiting potential of -0.48 and -0.58 V, respectively, for reducing CO2 to CH4. The activity mechanism shows that the catalysts with a negative d-band center and optimal positive charge can improve the CO2RR performance. Our study provides theoretical guidance for the rational design of highly active and selective catalysts.

11.
Front Pharmacol ; 14: 1199794, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37426819

RESUMEN

Background: Opioid-induced hyperalgesia (OIH) is an adverse event of prolonged opioid use that increases pain intensity. The optimal drug to prevent these adverse effects is still unknown. We aimed to conduct a network meta-analysis to compare different pharmacological interventions for preventing the increase in postoperative pain intensity caused by OIH. Methods: Several databases were searched independently for randomized controlled trials (RCTs) comparing various pharmacological interventions to prevent OIH. The primary outcomes were postoperative pain intensity at rest after 24 h and the incidence of postoperative nausea and vomiting (PONV). Secondary outcomes included pain threshold at 24 h after surgery, total morphine consumption over 24 h, time to first postoperative analgesic requirement, and shivering incidence. Results: In total, 33 RCTs with 1711 patients were identified. In terms of postoperative pain intensity, amantadine, magnesium sulphate, pregabalin, dexmedetomidine, ibuprofen, flurbiprofen plus dexmedetomidine, parecoxib, parecoxib plus dexmedetomidine, and S (+)-ketamine plus methadone were all associated with milder pain intensity than placebo, with amantadine being the most effective (SUCRA values = 96.2). Regarding PONV incidence, intervention with dexmedetomidine or flurbiprofen plus dexmedetomidine resulted in a lower incidence than placebo, with dexmedetomidine showing the best result (SUCRA values = 90.3). Conclusion: Amantadine was identified as the best in controlling postoperative pain intensity and non-inferior to placebo in the incidence of PONV. Dexmedetomidine was the only intervention that outperformed placebo in all indicators. Clinical Trial Registration: https://www.crd.york.ac. uk/prospero/display_record.php?, CRD42021225361.

12.
BMJ Ment Health ; 26(1)2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37290905

RESUMEN

BACKGROUND: The association between antipsychotics and cardiovascular diseases (CVDs) remains significant yet unestablished, especially in Chinese populations. OBJECTIVE: To investigate the risk of CVDs associated with antipsychotics among Chinese individuals with schizophrenia. METHODS: We conducted a nested case-control study on individuals diagnosed with schizophrenia in Shandong, China. The case group included individuals diagnosed with incident CVDs between 2012 and 2020. Each case was randomly matched with up to three controls. We used weighted logistic regression models to assess the risk of CVDs associated with antipsychotics and restricted cubic spline analysis to explore the dose-response relationship. FINDINGS: In total, 2493 cases and 7478 matched controls were included in the analysis. Compared with non-users, any antipsychotics use was associated with higher risk of any CVDs (weighted OR=1.54, 95% CI 1.32 to 1.79), with the risk mainly driven by ischaemic heart diseases (weighted OR=2.26, 95% CI 1.71 to 2.99). Treatments with haloperidol, aripiprazole, quetiapine, olanzapine, risperidone, sulpiride and chlorpromazine were associated with increased risk of CVDs. A non-linear dose-response relationship between dosage of antipsychotics and risk of CVDs was observed, with a sharp increase in risk in the beginning and then flattening out with higher doses. CONCLUSIONS: Use of antipsychotics was associated with increased risk of incident CVDs among individuals with schizophrenia, and the risk varied substantially among different antipsychotics and specific CVDs. CLINICAL IMPLICATIONS: Clinicians should consider the cardiovascular risk of antipsychotics and choose the appropriate type and dose of drugs in the treatment of schizophrenia.


Asunto(s)
Antipsicóticos , Enfermedades Cardiovasculares , Esquizofrenia , Humanos , Antipsicóticos/efectos adversos , Esquizofrenia/tratamiento farmacológico , Estudios de Casos y Controles , Enfermedades Cardiovasculares/inducido químicamente , Benzodiazepinas/efectos adversos
13.
Inflammation ; 46(3): 1118-1130, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37095260

RESUMEN

Growing evidence demonstrates that cyclic GMP-AMP synthase (cGAS), as a cytosolic DNA sensor, is essential for activating innate immunity and regulating inflammatory response against cellular damage. However, its role in immune-mediated hepatitis remains unclear. Here by challenging the cGAS knockout (KO) and their littermate wide-type (WT) mice with intravenous ConA injection to induce acute immune-mediated liver injury, we found that lack of cGAS drastically aggravated liver damage post ConA treatment for 24 h, reflected by increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and amplified hepatic necrosis. The number of apoptotic hepatocytes was also significantly increased in the KO mice. RNA-sequencing analysis revealed that leukocyte chemotaxis and migration-related genes were remarkably upregulated in the KO livers. Consistently, immunofluorescence assays illustrated that the infiltrating F4/80-positive macrophages, Ly6G-positive neutrophils, and CD3-positive T cells were all significantly increased in the KO liver sections. The hepatic expression of the pro-inflammatory genes was elevated as well. Supporting the in vivo findings, the knockdown of cGAS in cultured macrophages showed promoted migration potential and enhanced pro-inflammatory gene expression. These results collectively demonstrated that deletion of cGAS could aggravate ConA-induced acute liver injury, at least at the 24-h time point, and its mechanism might be related to facilitating leukocyte chemotaxis and promoting liver inflammatory response.


Asunto(s)
Hígado , Nucleotidiltransferasas , Ratones , Animales , Concanavalina A/toxicidad , Concanavalina A/metabolismo , Hígado/metabolismo , Nucleotidiltransferasas/metabolismo , Ratones Noqueados , Quimiotaxis de Leucocito , Ratones Endogámicos C57BL
14.
Environ Int ; 175: 107933, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37088008

RESUMEN

Recent studies on risks assessment of heavy metal(loid) are usually based on their total concentrations. Nevertheless, such an analysis does not assess their real amounts absorbed by human body. To scientifically assess the health risks, in this study medical earthworms were analyzed for relative bioavailability (RBA) of arsenic (As) and lead (Pb) using a multiple gavage mouse model with liver, kidneys, brain, and leg bones as biomarkers for the first time. Metal(loid) bioaccessibility was determined using in vitro physiologically based extraction (PBET) assay. We are the first to develop a novel accumulative health risk assessment strategy by combinational analyzing bioavailability of heavy metal(loid) levels to calculate target organ toxicity dose (TTD) modification of the HI and total cancer risk (TCR), which has capacity to evaluate the health risks of co-exposure of Pb and As in medical earthworms. As a result, As-RBA ranged from 7.2% to 45.1%, and Pb-RBA ranged from 16.1% to 49.8%. Additionally, As and Pb bioaccessibility varied from 6.7% to 48.3% and 7.8% to 52.5%, respectively. Moreover, strong in vivo-in vitro correlations (IVIVCs) were observed between metal-RBA and bioaccessibility, indicating the robustness of the in vitro PBET assay to predict metal-RBA in medical earthworms. The refined accumulative assessment strategy revealed that when adjusted by heavy metal(loid) bioavailability, the TTD modification of HI method typically exhibited an acceptable health risk caused by the co-exposure of Pb and As for cardiovascular, hematological, neurological, and renal system. The TCR levels associated with exposure to Pb and As due to the ingestion of medical earthworms were also acceptable after adjustment by bioavailability. Collectively, our innovation on accumulative risk assessment based on in vivo-in vitro correlation provides a novel approach engaging in assessing the risks due to co-exposure of As and Pb in medical earthworms.


Asunto(s)
Arsénico , Metales Pesados , Oligoquetos , Contaminantes del Suelo , Animales , Ratones , Humanos , Arsénico/toxicidad , Arsénico/análisis , Plomo/toxicidad , Plomo/análisis , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Medición de Riesgo , Disponibilidad Biológica , Receptores de Antígenos de Linfocitos T , Suelo , Metales Pesados/análisis
15.
Front Psychiatry ; 14: 1118836, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36873213

RESUMEN

Objective: Previous studies have demonstrated an association between anxiety and metabolic syndrome (MetS). However, the association is still controversial. This updated meta-analysis aimed to reanalyze the association between anxiety and MetS. Methods: We comprehensively searched PubMed, Embase and Web of Science for all related studies published before January 23, 2023. Observational studies that informed effect size with 95% confidence interval (CI) for the association between anxiety and MetS were included. According to heterogeneity between studies, fixed or random effects models were applied to calculate the pooled effect size. Publication bias was examined by funnel plots. Results: The research included 24 cross-sectional studies: 20 studies used MetS as the dependent variable with a pooled OR of 1.07 (95% CI: 1.01-1.13) and four studies used anxiety as the dependent variable with a pooled OR of 1.14 (95% CI: 1.07-1.23). Three cohort studies were found: two studies detected the association of baseline anxiety with the risk of MetS, one of the studies demonstrated a significant association, but a similar result was not found in another study; one study showed no significant association between baseline MetS and the risk of anxiety. Conclusion: Cross-sectional studies indicated an association between anxiety and MetS. The results from cohort studies are still inconsistent and limited. More large-scale prospective studies are needed to further reveal the causal relationship of anxiety with MetS.

16.
Insect Sci ; 30(6): 1607-1621, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36915030

RESUMEN

Methyl-CpG (mCpG) binding domain (MBD) proteins especially bind with methylated DNA, and are involved in many important biological processes; however, the binding mechanism between insect MBD2/3 and mCpG remains unclear. In this study, we identified 2 isoforms of the MBD2/3 gene in Bombyx mori, MBD2/3-S and MBD2/3-L. Binding analysis of MBD2/3-L, MBD2/3-S, and 7 mutant MBD2/3-L proteins deficient in ß1-ß6 or α1 in the MBD showed that ß2-ß3-turns in the ß-sheet of the MBD are necessary for the formation of the MBD2/3-mCpG complex; furthermore, other secondary structures, namely, ß4-ß6 and an α-helix, play a role in stabilizing the ß-sheet structure to ensure that the MBD is able to bind mCpG. In addition, sequence alignment and binding analyses of different insect MBD2/3s indicated that insect MBD2/3s have an intact and conserved MBD that binds to the mCpG of target genes. Furthermore, MBD2/3 RNA interference results showed that MBD2/3-L plays a role in regulating B. mori embryonic development, similar to that of DNA methylation; however, MBD2/3-S without ß4-ß6 and α-helix does not alter embryonic development. These results suggest that MBD2/3-L recognizes and binds to mCpG through the intact ß-sheet structure in its MBD, thus ensuring silkworm embryonic development.


Asunto(s)
Bombyx , Proteínas de Unión al ADN , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Bombyx/genética , Bombyx/metabolismo , Islas de CpG , Conformación Proteica en Lámina beta , Metilación de ADN , Genómica
17.
Compr Psychiatry ; 122: 152370, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36709559

RESUMEN

INTRODUCTION: Numerous studies have found an association between autoimmune diseases of the nervous system (ADNS) and schizophrenia (SCZ), but the findings remain controversial. We conducted the first meta-analysis to summarize the current evidence from cohort studies that evaluated the association between ADNS and SCZ. METHODS: PubMed, Web of Science, and Embase were comprehensively searched until May 30, 2022 for articles on the association between ADNS and SCZ. Every included study was reported effect size with 95% CIs for the association between ADNS and SCZ. Meta-regression and subgroup analysis were used to assess the heterogeneity. RESULTS: A total of 8 cohort studies with 12 cohorts were included in the meta-analysis. We observed a significant association between ADNS and SCZ (RR = 1.42; 95%CI, 1.18-1.72). Subgroup analysis showed that the risk of SCZ was significantly increased when ADNS were used as exposure factors (RR = 1.48; 95%CI, 1.15-1.89), whereas with SCZ did not observe an increased risk of subsequent ADNS (RR = 1.33; 95%CI, 0.92-1.92); multiple sclerosis (MS) was positively associated with SCZ (RR = 1.36; 95%CI, 1.12-1.66), but no significant association was found between Guillain-Barre syndrome (GBS) and SCZ (RR = 1.90; 95%CI, 0.87-4.17). Meanwhile, we found location was the source of heterogeneity. LIMITATIONS: High heterogeneity was observed (I2 = 92.0%), and only English literature was included in the meta-analysis. CONCLUSIONS: We found a positive association between ADNS and SCZ, and the association was different across the different types of ADNS. The results of the study are helpful for clinicians to carry out targeted preventive measures for ADNS and SCZ.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Esquizofrenia , Humanos , Estudios de Cohortes
18.
Microbiol Spectr ; 11(1): e0209622, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36475917

RESUMEN

Bradyrhizobium guangxiense CCBAU53363 efficiently nodulates peanut but exhibits incompatible interaction with mung bean. By comparing the common nod region with those of other peanut bradyrhizobia efficiently nodulating these two hosts, distinctive characteristics with a single nodD isoform (nodD1) and a truncated nolA were identified. However, the regulatory roles of NodD1 and NolA and their coordination in legume-bradyrhizobial interactions remain largely unknown in terms of explaining the contrasting symbiotic compatibility. Here, we report that nolA was important for CCBAU53363 symbiosis with peanut but restricted nodulation on mung bean, while nodD1 was dispensable for CCBAU53363 symbiosis with peanut but essential for nodulation on mung bean. Moreover, nolA exerted a cumulative contribution with nodD1 to efficient symbiosis with peanut. Additionally, mutants lacking nolA delayed nodulation on peanut, and both nolA and nodD1 were required for competitive nodule colonization. It is noteworth that most of the nodulation genes and type III secretion system (T3SS)-related genes were significantly downregulated in a strain 53ΔnodD1nolA mutant compared to wild-type strain CCBAU53363, and the downregulated nodulation genes also had a greater impact than T3SS-related genes on the symbiotic defect of 53ΔnodD1nolA on peanut, which was supported by a more severe symbiotic defect induced by 53ΔnodC than that with the 53ΔnodD1nopP, 53ΔnodD1rhcJ, and 53ΔnodD1ttsI mutants. NolA did not regulate nod gene expression but did regulate the T3SS effector gene nopP in an indirect way. Meanwhile, nolA, nodW, and some T3SS-related genes besides nopP were also demonstrated as new "repressors" that seriously impaired CCBAU53363 symbiosis with mung bean. Taken together, the roles and essentiality of nolA and nodD1 in modulating symbiotic compatibility are sophisticated and host dependent. IMPORTANCE The main findings of this study were that we clarified that the roles and essentiality of nodD1 and nolA are host dependent. Importantly, for the first time, NolA was found to positively regulate T3SS effector gene nopP to mediate incompatibility on mung bean. Additionally, NolA does not regulate nod genes, which are activated by NodD1. nolA exerts a cumulative effect with nodD1 on CCBAU53363 symbiosis with peanut. These findings shed new light on our understanding of coordinated regulation of NodD1 and NolA in peanut bradyrhizobia with different hosts.


Asunto(s)
Fabaceae , Vigna , Arachis/metabolismo , Simbiosis , Proteínas Bacterianas/genética
19.
Biochim Biophys Acta Mol Basis Dis ; 1869(1): 166572, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36252941

RESUMEN

Recent studies suggest that deletion of the core clock gene Bmal1 in the kidney has a significant influence on renal physiological functions. However, the role of renal Bmal1 in chronic kidney disease (CKD) remains poorly understood. Here by generating mice lacking Bmal1 in proximal tubule (Bmal1flox/flox-KAP-Cre+, ptKO) and inducing CKD with the adenine diet model, we found that lack of Bmal1 in proximal tubule did not alter renal water and electrolyte homeostasis. However, adenine-induced renal injury indexes, including blood urea nitrogen, serum creatinine, and proteinuria, were markedly augmented in the ptKO mice. The ptKO kidneys also developed aggravated tubulointerstitial fibrosis and epithelial-mesenchymal transformation. Mechanistically, RNAseq analysis revealed significant downregulation of the expression of genes related to energy and substance metabolism, in particular fatty acid oxidation and glutathione/homocysteine metabolism, in the ptKO kidneys. Consistently, the renal contents of ATP and glutathione were markedly reduced in the ptKO mice, suggesting the disruption of cellular metabolic homeostasis. Moreover, we demonstrated that Bmal1 can activate the transcription of cystathionine ß-synthase (CBS), a key enzyme for homocysteine metabolism and glutathione biosynthesis, through direct recruitment to the E-box motifs of its promoter. Supporting the in vivo findings, knockdown of Bmal1 in cultured proximal tubular cells inhibited CBS expression and amplified albumin-induced cell injury and fibrogenesis, while glutathione supplementation remarkably reversed these changes. Taken together, we concluded that deletion of Bmal1 in proximal tubule may aggravate chronic kidney injury and exacerbate renal fibrosis, the mechanism is related to suppressing CBS transcription and disturbing glutathione related metabolic homeostasis. These findings suggest a protective role of Bmal1 in chronic tubular injury and offer a novel target for treating CKD.


Asunto(s)
Riñón , Insuficiencia Renal Crónica , Ratones , Animales , Riñón/patología , Fibrosis , Insuficiencia Renal Crónica/patología , Homeostasis , Adenina , Glutatión/metabolismo , Homocisteína/metabolismo
20.
Poult Sci ; 102(1): 102263, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36371910

RESUMEN

Receptor interacting protein kinase 2 (RIPK2) is involved in a variety of signaling pathway to produce a series of inflammatory cytokines in response to a diverse of bacterial, viral and protozoal pathogens. However, the underlying regulating of RIPK2 remain unknown. Transcriptome alterations in chicken HD11 cells following RIPK2 overexpression or silencing by shRNA were analyzed by next-generation sequencing. Both overexpression and knockdown of the RIPK2 gene caused wide-spread changes in gene expression in chicken HD11 cells. Differentially expressed genes (DEGs) caused by altered RIPK2 gene expression were associated with multiple biological processes linked with biological regulation, response to stimulus, cell communication, and signal transduction etc. KEGG analysis revealed that many of the DEGs were enriched in VEGF signaling pathway, ECM-receptor interaction, Focal adhesion, TGF-beta signaling pathway etc. Moreover, we show that initiation genes, TGFB1 and TGFB3, in the TGF-beta signaling pathway are biological targets regulated by RIPK2 in chicken HD11 cells. This is the first transcriptome-wide study in which RIPK2-regulated genes in chicken cells have been screened. Our findings elucidate the molecular events associated with RIPK2 in chicken HD11 cells.


Asunto(s)
Pollos , Transcriptoma , Animales , Pollos/genética , Transducción de Señal/genética , Factor de Crecimiento Transformador beta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA