Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Res ; 231(Pt 3): 116247, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37245576

RESUMEN

The solidification/stabilisation behaviours of Zn2+ in magnesium potassium phosphate cement (MKPC) have not been thoroughly investigated. Herein, a series of experiments and a detailed density functional theory (DFT) study were conducted to investigate the solidification/stabilisation behaviours of Zn2+ in MKPC. The results showed that the compressive strength of MKPC reduced with the addition of Zn2+ because the formation of MgKPO4·6H2O (the main hydration product in MKPC) was delayed with the addition of Zn2+, as discovered by the crystal characteristics, and because Zn2+ exhibited a lower binding energy in MgKPO4·6H2O compared to Mg2+, as revealed by DFT results. Additonally, Zn2+ had little influence on the structure of MgKPO4·6H2O, and Zn2+ existed in MKPC as the formation of Zn2(OH)PO4, which was decomposed in the range of around 190-350 °C. Moreover, there were a lot of well-crystallised tabular hydration products before the addition of Zn2+, but the matrix was comprised of irregular prism crystals after adding Zn2+. Furthermore, the leaching toxicity of Zn2+ of MKPC was much smaller than the requirements of Chinese and European standards.


Asunto(s)
Magnesio , Metales Pesados , Potasio , Metales Pesados/química , Teoría Funcional de la Densidad , Zinc
2.
Research (Wash D C) ; 2020: 7815462, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32412015

RESUMEN

Cavitation and crazing in thermosetting polymers can be sophisticatedly designed for valuable applications in optics, electronics, and biotechnology. It is a great challenge for numerical study to describe the formations of cavity and fibrils in polymer composite due to the complicated interfacial interaction. To explore this challenging task, we exploit a two-phase coarse-grained framework which serves as an efficient atomistic level-consistent approach to expose and predict the transition between cavitation and crazing in a polymeric system. The coarse-grained framework is utilized to transmit the information between single phase and interface in polymer composite, and the learning tasks of force field are fulfilled through parameterization of mechanical performances and structural characterizations. We elaborate on the intrinsic characteristics of the cavitation-crazing transition in diamond nanothread- (DNT-) reinforced polymethyl methacrylate composites, in which DNT plays a specific role of nanomodulator to tune the cavity volume ratio. The transition from cavitation to crazing can be induced through a novel dissipative mechanism of opening an interlocked network, in which case the DNT is stretched to the aligned fibrils and links crazing tightly by interfacial adhesion. The designed computational framework can broaden the scope of theoretical tools for providing better insights into the microstructure design of polymer composites.

3.
Langmuir ; 36(9): 2427-2438, 2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-32053750

RESUMEN

Of the multitude of stimuli-responsive microgels, it is still a challenge to achieve multiple responsivenesses to one single stimulus, which can even revert to the corresponding original state autonomously after stimulus. In this work, we reported a series of anthraquinone functionalized microgels (PNI-xVAQ) with thermosensitivity and redox-actuated self-regulating color, size, and fluorescent properties, which were easily synthesized via surfactant-free emulsion copolymerization (SFEP) with N-isopropylacrylamide (NIPAm) as the monomer, 2-vinylanthraquinone (VAQ) as the comonomer, and N,N'-methylenebis(acrylamide) (BIS) as the cross-linker in an aqueous solution at 70 °C. The hydrophobic interactions of comonomer VAQ also led to the formation of internal phase-separated hydrophobic nanodomains in the obtained PNI-xVAQ microgels. The self-regulating color, size, and fluorescence changes of the PNI-xVAQ microgels were reliant on the nonequilibrium redox process of anthraquinone moieties by the addition of sodium dithionite as the chemical fuel to activate the positive feedback that was the reduction of anthraquinone to transient anthraquinone radical anions, following the slow oxidation of anthraquinone radical anions by autonomous "breathing" oxygen in air as the delayed negative feedback. These autonomous self-regulating properties of the PNI-xVAQ microgel were recyclable to a certain extent by repeated feeding of sodium dithionite.

4.
Langmuir ; 35(49): 16353-16365, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31718193

RESUMEN

Poly(N-isopropylacrylamide) (PNIPAM)-tannic acid (TA) microgels were successfully prepared via surfactant-free emulsion polymerization (SFEP) at 70 °C in aqueous solution using N-isopropylacrylamide (NIPAM) as the monomer and a natural polyphenol macromolecule, TA, as the sole cross-linker. The cross-linking network of the PNIPAM-TA microgels was confirmed to contain both physical cross-linking structures formed via hydrogen-bonding interactions between TA and PNIPAM chains and chemical cross-linking structures formed via capturing the radicals of propagating polymer chains by catechol and pyrogallol groups of TA. Furthermore, TA was applied to modify the surface of hydrophobic Fe3O4 nanoparticles, leading to hydrophilic Fe3O4@TA composite nanoparticles, which were successfully used as the cross-linker to fabricate PNIPAM-Fe3O4@TA organic-inorganic hybrid microgels. The obtained PNIPAM-TA and PNIPAM-Fe3O4@TA organic-inorganic hybrid microgels had a uniform spherical shape with a relatively narrow size distribution and exhibited thermosensitive behavior and pH-tunable degradation. The PNIPAM-TA microgels were stable in the pH range of 1.3-11.1 but underwent complete degradation with pH above 11.4. The PNIPAM-Fe3O4@TA hybrid microgels were partially degraded at pH values of 1.3 and 2.1, stable in the pH range of 3.1-11.1, and underwent complete degradation at pH above 11.4. The partial degradation of PNIPAM-Fe3O4@TA organic-inorganic hybrid microgels under strong acidic conditions was attributed to the disintegration of Fe3O4 nanoparticles. The complete degradation of both microgels at pH above 11.4 was attributed to the hydrolysis of ester groups of TA under strong alkali conditions.

5.
Sensors (Basel) ; 19(19)2019 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-31569397

RESUMEN

A highly selective and sensitive optical sensor was developed to colorimetric detect trace Fe3+ ions in aqueous solution. The sensor was the sulfasalazine (SSZ) functionalized microgels (SSZ-MGs), which were fabricated via in-situ quaternization reaction. The obtained SSZ-MGs had hydrodynamic radius of about 259 ± 24 nm with uniform size distribution at 25 °C. The SSZ-MG aqueous suspensions can selectively and sensitively response to Fe3+ ions in aqueous solution at 25 °C and pH of 5.6, which can be quantified by UV-visible spectroscopy and also easily distinguished by the naked eye. Job's plot indicated that the molar binding ratio of SSZ moiety in SSZ-MGs to Fe3+ was close to 1:1 with an apparent association constant of 1.72 × 104 M-1. A linear range of 0-12 µM with the detection limit of 0.110 µM (0.006 mg/L) was found. The obtained detection limit was much lower than the maximum allowance level of Fe3+ ions in drinking water (0.3 mg/L) regulated by the Environmental Protection Agency (EPA) of the United States. The existence of 19 other species of metal ions, namely, Ag+, Li+, Na+, K+, Ca2+, Ba2+, Cu2+, Ni2+, Mn2+, Pb2+, Zn2+, Cd2+, Co2+, Cr3+, Yb3+, La3+, Gd3+, Ce3+, and Bi3+, did not interfere with the detection of Fe3+ ions.

6.
Nanomaterials (Basel) ; 7(7)2017 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-28708097

RESUMEN

Carbon nanotubes (CNTs) have shown promise for improving the mechanical performance of cement composites through crack-bridging and frictional pull-out. The interactive behaviors between CNTs and cement matrix act are crucial in optimizing the reinforcement of CNTs in cement composites. This study investigates the effects of nano-silica (NS) sol-gel on the interactive behaviors of CNTs and the cement matrix through a series of experiments and analyses. UV-visible spectrometer results show that CNTs are well-dispersed in suspension and the addition of NS has a negligible effect on the stability of CNT dispersion. Calorimetry tests and dynamic mechanical analysis demonstrate the nucleation and frictional performance of CNTs in cement matrix, respectively. The paper shows that the physical adsorption of NS on the CNT surface could result in the acceleration of cement hydration. Morphology observation confirms that a denser interface between CNTs and cement hydrates is formed. Finally, the improved interaction between CNTs and cement hydrates leads to a substantial increase in friction between CNTs and the cement matrix under periodic loading. NS may act as an ideal admixture for improving both the interactive behaviors between CNTs and cement matrix and the damping properties of cement composite.

7.
Materials (Basel) ; 8(12): 8780-8792, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-28793745

RESUMEN

This paper aimed to explore the mechanical properties of a cement-based material with carbon nanotube (CNT) under drying and freeze-thaw environments. Mercury Intrusion Porosimetry and Scanning Electron Microscopy were used to analyze the pore structure and microstructure of CNT/cement composite, respectively. The experimental results showed that multi-walled CNT (MWCNT) could improve to different degrees the mechanical properties (compressive and flexural strengths) and physical performances (shrinkage and water loss) of cement-based materials under drying and freeze-thaw conditions. This paper also demonstrated that MWCNT could interconnect hydration products to enhance the performance of anti-microcracks for cement-based materials, as well as the density of materials due to CNT's filling action.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...